
Glk:	A	Portable	Interface	Standard	for	IF
API	specification	version	0.7.5
Maintained	by	IFTF:	<specs@ifarchive.org>

Copyright	2020	by	the	Interactive	Fiction	Technology	Foundation.	This	specification	is	licensed	under	a	Creative
Commons	Attribution-Noncommercial-Share	Alike	3.0	Unported	License:	http://creativecommons.org/licenses/by-nc-
sa/3.0

The	API	described	by	this	document	is	an	idea,	not	an	expression	of	an	idea,	and	is	therefore	not	copyrightable.	Anyone
is	free	to	write	programs	that	use	the	Glk	API	or	libraries	that	implement	it.

This	document	and	further	Glk	information	can	be	found	at:	 https://github.com/iftechfoundation/ifarchive-if-specs

0.	Introduction
0.1.	What	Glk	Is
0.2.	What	About	the	Virtual	Machine?
0.3.	What	Does	Glk	Not	Do?
0.4.	Conventions	of	This	Document
0.5.	Credits

1.	Overall	Structure
1.1.	Your	Program's	Main	Function
1.2.	Exiting	Your	Program
1.3.	The	Interrupt	Handler
1.4.	The	Tick	Thing
1.5.	Basic	Types
1.6.	Opaque	Objects

1.6.1.	Rocks
1.6.2.	Iterating	Through	Opaque	Objects

1.7.	The	Gestalt	System
1.8.	The	Version	Number
1.9.	Other	API	Conventions

2.	Character	Encoding
2.1.	Testing	for	Unicode	Capabilities
2.2.	Output
2.3.	Line	Input
2.4.	Character	Input
2.5.	Upper	and	Lower	Case
2.6.	Unicode	String	Normalization

2.6.1.	A	Note	on	Unicode	Case-Folding	and	Normalization
3.	Windows

3.1.	Window	Arrangement
3.2.	Window	Opening,	Closing,	and	Constraints
3.3.	Changing	Window	Constraints
3.4.	A	Note	on	Display	Style
3.5.	The	Types	of	Windows

3.5.1.	Blank	Windows
3.5.2.	Pair	Windows
3.5.3.	Text	Buffer	Windows
3.5.4.	Text	Grid	Windows
3.5.5.	Graphics	Windows

3.6.	Echo	Streams
3.7.	Other	Window	Functions

4.	Events
4.1.	Character	Input	Events
4.2.	Line	Input	Events
4.3.	Mouse	Input	Events
4.4.	Timer	Events
4.5.	Window	Arrangement	Events
4.6.	Window	Redrawing	Events

https://iftechfoundation.org/
http://creativecommons.org/licenses/by-nc-sa/3.0
https://github.com/iftechfoundation/ifarchive-if-specs

4.7.	Sound	Notification	Events
4.8.	Hyperlink	Events
4.9.	Other	Events

5.	Streams
5.1.	How	To	Print
5.2.	How	To	Read
5.3.	Closing	Streams
5.4.	Stream	Positions
5.5.	Styles

5.5.1.	Suggesting	the	Appearance	of	Styles
5.5.2.	Testing	the	Appearance	of	Styles

5.6.	The	Types	of	Streams
5.6.1.	Window	Streams
5.6.2.	Memory	Streams
5.6.3.	File	Streams
5.6.4.	Resource	Streams

5.7.	Other	Stream	Functions
6.	File	References

6.1.	The	Types	of	File	References
6.2.	Other	File	Reference	Functions

7.	Graphics
7.1.	Image	Resources
7.2.	Graphics	in	Graphics	Windows
7.3.	Graphics	in	Text	Buffer	Windows
7.4.	Testing	for	Graphics	Capabilities

8.	Sound
8.1.	Sound	Resources
8.2.	Creating	and	Destroying	Sound	Channels
8.3.	Playing	Sounds
8.4.	Other	Sound	Channel	Functions
8.5.	Testing	for	Sound	Capabilities

9.	Hyperlinks
9.1.	Creating	Hyperlinks
9.2.	Accepting	Hyperlink	Events
9.3.	Testing	for	Hyperlink	Capabilities

10.	The	System	Clock
10.1.	Time	and	Date	Conversions
10.2.	Testing	for	Clock	Capabilities

11.	Porting,	Adapting,	and	Other	Messy	Bits
11.1.	Startup	Options
11.2.	Going	Outside	the	Glk	API

11.2.1.	Memory	Management
11.2.2.	String	Manipulation
11.2.3.	File	Handling
11.2.4.	Private	Extensions	to	Glk

11.3.	Glk	and	the	Virtual	Machine
11.3.1.	Implementing	a	Higher	Layer	Over	Glk
11.3.2.	Glk	as	a	VM's	Native	API

12.	Appendices
12.1.	The	Dispatch	Layer

12.1.1.	How	This	Works
12.1.2.	Interrogating	the	Interface
12.1.3.	Dispatching

12.1.3.1.	Basic	Types
12.1.3.2.	References
12.1.3.3.	Structures
12.1.3.4.	Arrays
12.1.3.5.	Return	Values

12.1.4.	Getting	Argument	Prototypes
12.1.5.	Functions	the	Library	Must	Provide

12.1.5.1.	Opaque	Object	Registry

12.1.5.2.	Retained	Array	Registry
12.1.6.	Table	of	Selectors

12.2.	The	Blorb	Layer
12.2.1.	How	This	Works
12.2.2.	What	the	Program	Does
12.2.3.	What	the	Library	Does
12.2.4.	What	the	Blorb	Layer	Does
12.2.5.	Blorb	Errors

0.	Introduction

0.1.	What	Glk	Is

Glk	defines	a	portable	API	(programming	interface)	for	applications	with	text	UIs	(user	interfaces.)	It	was	primarily
designed	for	interactive	fiction,	but	it	should	be	suitable	for	many	interactive	text	utilities,	particularly	those	based	on	a
command	line.

Rather	than	go	into	a	detailed	explanation	of	what	that	means,	let	me	give	examples	from	the	world	of	text	adventures.
TADS,	Glulx,	and	Infocom's	Z-machine	have	nearly	identical	interface	capabilities;	each	allows	a	program	to...

·		print	an	indefinite	stream	of	text	into	an	output	buffer,	with	some	style	control
·		input	a	line	of	text
·		display	a	few	lines	of	text	in	a	small	separate	window
·		store	information	in	a	file,	or	read	it	in

and	so	on.	However,	the	implementation	of	these	capabilities	vary	widely	between	platforms	and	operating	systems.
Furthermore,	this	variance	is	transparent	to	the	program	(the	adventure	game.)	The	game	does	not	care	whether	output
is	displayed	via	a	character	terminal	emulator	or	a	GUI	window;	nor	whether	input	uses	Mac-style	mouse	editing	or
EMACS-style	control	key	editing.

On	the	third	hand,	the	user	is	likely	to	care	deeply	about	these	interface	decisions.	This	is	why	there	are	Mac-native
interpreters	on	Macintoshes,	stylus	and	touch-screen	interpreters	on	mobile	devices,	and	so	on	–	and	(ultimately)	why
there	are	Macintoshes	and	iPads	and	terminal	window	apps	in	the	first	place.

On	the	fourth	hand,	TADS	and	Inform	are	not	alone;	there	is	historically	a	large	number	of	text	adventure	systems.	Most
are	obsolete	or	effectively	dead;	but	it	is	inevitable	that	more	will	appear.	Users	want	each	living	system	ported	to	all	the
platforms	in	use.	Users	also	prefer	these	ports	to	use	the	same	interface,	as	much	as	possible.

This	all	adds	up	to	a	pain	in	the	ass.

Glk	tries	to	draw	a	line	between	the	parts	of	the	text	adventure	world	which	are	identical	on	all	IF	systems,	and	different
on	different	operating	systems,	from	the	parts	which	are	unique	to	each	IF	system	but	identical	in	all	OSs.	The	border
between	these	two	worlds	is	the	Glk	API.

My	hope	is	that	a	new	IF	system,	or	existing	ones	which	are	less-supported	(Hugo,	AGT,	etc)	can	be	written	using	Glk	for
all	input	and	output	function.	The	IF	system	would	then	be	in	truly	portable	C.	On	the	other	side	of	the	line,	there	would
be	a	Glk	library	for	each	operating	system	and	interface	(Macintosh,	X-windows,	curses-terminal,	etc.)	Porting	the	IF
system	to	every	platform	would	be	trivial;	compile	the	system,	and	link	in	the	library.

Glk	can	also	serve	as	a	nice	interface	for	applications	other	than	games	–	data	manglers,	quick	hacks,	or	anything	else
which	would	normally	lack	niceties	such	as	editable	input,	macros,	scrolling,	or	whatever	is	native	to	your	machine's
interface	idiom.

0.2.	What	About	the	Virtual	Machine?

You	can	think	of	Glk	as	an	IF	virtual	machine,	without	the	virtual	machine	part.	The	"machine"	is	just	portable	C	code.

An	IF	virtual	machine	has	been	designed	specifically	to	go	along	with	Glk.	This	VM,	called	Glulx,	uses	Glk	as	its
interface;	each	Glk	call	corresponds	to	an	input/output	opcode	of	the	VM.

For	more	discussion	of	this	approach,	see	 section	11.3,	"Glk	and	the	Virtual	Machine" .	Glulx	is	documented	at
http://eblong.com/zarf/glulx/.

http://eblong.com/zarf/glulx/

Of	course,	Glk	can	be	used	with	other	IF	systems.	The	advantage	of	Glulx	is	that	it	provides	the	game	author	with	direct
and	complete	access	to	the	Glk	API.	Other	IF	systems	typically	have	an	built-in	abstract	I/O	API,	which	maps	only
partially	onto	Glk.	For	these	systems,	Glk	tends	to	be	a	least-common-denominator	interface:	highly	portable,	but	not
necessarily	featureful.	(Even	if	Glk	has	a	feature,	it	may	not	be	available	through	the	layers	of	abstraction.)

0.3.	What	Does	Glk	Not	Do?

Glk	does	not	handle	the	things	which	should	be	handled	by	the	program	(or	the	IF	system,	or	the	virtual	machine)	which
is	linked	to	Glk.	This	means	that	Glk	does	not	address

·		parsing
·		game	object	storage
·		computation
·		text	compression

0.4.	Conventions	of	This	Document

This	document	defines	the	Glk	API.	I	have	tried	to	specify	exactly	what	everything	does,	what	is	legal,	what	is	illegal,	and
why.

Sections	in	square	brackets	[like	this]	are	notes.	They	do	not	define	anything;	they	clarify	or	explain	what	has	already
been	defined.	If	there	seems	to	be	a	conflict,	ignore	the	note	and	follow	the	definition.

[Notes	with	the	label	"WORK"	are	things	which	I	have	not	yet	fully	resolved.	Your	comments	requested	and	welcome.]

This	document	is	written	for	the	point	of	view	of	the	game	programmer	–	the	person	who	wants	to	use	the	Glk	library	to
print	text,	input	text,	and	so	on.	By	saying	what	the	Glk	library	does,	of	course,	this	document	also	defines	the	task	of	the
Glk	programmer	–	the	person	who	wants	to	port	the	Glk	library	to	a	new	platform	or	operating	system.	If	the	Glk	library
guarantees	something,	the	game	programmer	can	rely	on	it,	and	the	Glk	programmer	is	required	to	support	it.
Contrariwise,	if	the	library	does	not	guarantee	something,	the	Glk	programmer	may	handle	it	however	he	likes,	and	the
game	programmer	must	not	rely	on	it.	If	something	is	illegal,	the	game	programmer	must	not	do	it,	and	the	Glk
programmer	is	not	required	to	worry	about	it.	[It	is	preferable,	but	not	required,	that	the	Glk	library	detect	illegal
requests	and	display	error	messages.	The	Glk	library	may	simply	crash	when	the	game	program	does	something	illegal.
This	is	why	the	game	programmer	must	not	do	it.	Right?]

Hereafter,	"Glk"	or	"the	library"	refers	to	the	Glk	library,	and	"the	program"	is	the	game	program	(or	whatever)	which	is
using	the	Glk	library	to	print	text,	input	text,	or	whatever.	"You"	are	the	person	writing	the	program.	"The	player"	is	the
person	who	will	use	the	program/Glk	library	combination	to	actually	play	a	game.	Or	whatever.

The	Glk	API	is	declared	in	a	C	header	file	called	"glk.h".	Please	refer	to	that	file	when	reading	this	one.

0.5.	Credits

Glk	has	been	a	work	of	many	years	and	many	people.	If	I	tried	to	list	everyone	who	has	offered	comments	and
suggestions,	I	would	immediately	go	blank,	forget	everyone's	name,	and	become	a	mute	hermit-like	creature	living	in	a
train	tunnel	under	Oakland.	But	I	must	thank	those	people	who	have	written	Glk	libraries	and	linking	systems:	Matt
Kimball,	Ross	Raszewski,	David	Kinder,	John	Elliott,	Joe	Mason,	Stark	Springs,	and,	er,	anyone	I	missed.	Look!	A	train!

Evin	Robertson	wrote	the	original	proposal	for	the	Glk	Unicode	functions,	which	I	imported	nearly	verbatim	into	this
document.	Thank	you.

1.	Overall	Structure

1.1.	Your	Program's	Main	Function

The	top	level	of	the	program	–	the	main()	function	in	C,	for	example	–	belongs	to	Glk.	 [This	means	that	Glk	isn't	really	a
library.	In	a	sense,	you	are	writing	a	library,	which	is	linked	into	Glk.	This	is	bizarre	to	think	about,	so	forget	it.]

You	define	a	function	called	glk_main(),	which	the	library	calls	to	begin	running	your	program.	glk_main()	should	run
until	your	program	is	finished,	and	then	return.

Glk	does	all	its	user-interface	work	in	a	function	called	glk_select().	This	function	waits	for	an	event	–	typically	the

player's	input	–	and	returns	an	structure	representing	that	event.	This	means	that	your	program	must	have	an	event
loop.	In	the	very	simplest	case,	you	could	write

void	glk_main()
{
				event_t	ev;
				while	(1)	{
								glk_select(&ev);
								switch	(ev.type)	{
												default:
																/*	do	nothing	*/
																break;
								}
				}
}

This	is	a	legal	Glk-compatible	program.	As	you	might	expect,	it	doesn't	do	anything.	The	player	will	see	an	empty
window,	which	he	can	only	stare	at,	or	destroy	in	a	platform-defined	standard	manner.	[Command-period	on	the
Macintosh;	a	kill-window	menu	option	in	an	X	window	manager;	control-C	in	a	curses	terminal	window.]

[However,	this	program	does	not	spin	wildly	and	burn	CPU	time.	The	glk_select()	function	waits	for	an	event	it	can
return.	Since	it	only	returns	events	which	you	have	requested,	it	will	wait	forever,	and	grant	CPU	time	to	other	processes
if	that's	meaningful	on	the	player's	machine.]	[Actually,	there	are	some	events	which	are	always	reported.	More	may	be
defined	in	future	versions	of	the	Glk	API.	This	is	why	the	default	response	to	an	event	is	to	do	nothing.	If	you	don't
recognize	the	event,	ignore	it.]

1.2.	Exiting	Your	Program

If	you	want	to	shut	down	your	program	in	the	middle	of	your	glk_main()	function,	you	can	call	glk_exit().

void	glk_exit(void);

This	function	does	not	return.

If	you	print	some	text	to	a	window	and	then	shut	down	your	program,	you	can	assume	that	the	player	will	be	able	to
read	it.	Most	likely	the	Glk	library	will	give	a	"Hit	any	key	to	exit"	prompt.	(There	are	other	possibilities,	however.	A
terminal-window	version	of	Glk	might	simply	exit	and	leave	the	last	screen	state	visible	in	the	terminal	window.)

[You	should	only	shut	down	your	program	with	glk_exit()	or	by	returning	from	your	glk_main()	function.	If	you	call	the
ANSI	exit()	function,	or	other	platform-native	functions,	bad	things	may	happen.	Some	versions	of	the	Glk	library	may	be
designed	for	multiple	sessions,	for	example,	and	you	would	be	cutting	off	all	the	sessions	instead	of	just	yours.	You
would	probably	also	prevent	final	text	from	being	visible	to	the	player.]

1.3.	The	Interrupt	Handler

Most	platforms	have	some	provision	for	interrupting	a	program	–	command-period	on	the	Macintosh,	control-C	in	Unix,
possibly	a	window	manager	menu	item,	or	other	possibilities.	This	can	happen	at	any	time,	including	while	execution	is
nested	inside	one	of	your	own	functions,	or	inside	a	Glk	library	function.

If	you	need	to	clean	up	critical	resources,	you	can	specify	an	interrupt	handler	function.

void	glk_set_interrupt_handler(void	(*func)(void));

The	argument	you	pass	to	glk_set_interrupt_handler()	should	be	a	pointer	to	a	function	which	takes	no	argument	and
returns	no	result.	If	Glk	receives	an	interrupt,	and	you	have	set	an	interrupt	handler,	your	handler	will	be	called,	before
the	process	is	shut	down.

Initially	there	is	no	interrupt	handler.	You	can	reset	to	not	having	any	by	calling	glk_set_interrupt_handler(NULL).

If	you	call	glk_set_interrupt_handler()	with	a	new	handler	function	while	an	older	one	is	set,	the	new	one	replaces	the
old	one.	Glk	does	not	try	to	queue	interrupt	handlers.

You	should	not	try	to	interact	with	the	player	in	your	interrupt	handler.	Do	not	call	glk_select()	or	glk_select_poll().
Anything	you	print	to	a	window	may	not	be	visible	to	the	player.

1.4.	The	Tick	Thing

Many	platforms	have	some	annoying	thing	that	has	to	be	done	every	so	often,	or	the	gnurrs	come	from	the	voodvork	out
and	eat	your	computer.

Well,	not	really.	But	you	should	call	glk_tick()	every	so	often,	just	in	case.	It	may	be	necessary	to	yield	time	to	other
applications	in	a	cooperative-multitasking	OS,	or	to	check	for	player	interrupts	in	an	infinite	loop.

void	glk_tick(void);

This	call	is	fast;	in	fact,	on	average,	it	does	nothing	at	all.	So	you	can	call	it	often.	 [In	a	virtual	machine	interpreter,	once
per	opcode	is	appropriate.	A	more	parsimonious	approach	would	be	once	per	branch	and	function	call	opcode;	this
guarantees	it	will	be	called	inside	loops.	In	a	program	with	lots	of	computation,	pick	a	comparable	rate.]

glk_tick()	does	not	try	to	update	the	screen,	or	check	for	player	input,	or	any	other	interface	task.	For	that,	you	should
call	glk_select()	or	glk_select_poll().	See	section	4,	"Events".

[Captious	critics	have	pointed	out	that	in	the	sample	program	model.c,	I	do	not	call	glk_tick()	at	all.	This	is	because
model.c	has	no	heavy	loops.	It	does	a	bit	of	work	for	each	command,	and	then	cycles	back	to	the	top	of	the	event	loop.
The	glk_select()	call,	of	course,	blocks	waiting	for	input,	so	it	does	all	the	yielding	and	interrupt-checking	one	could
imagine.]

[Basically,	you	must	ensure	there's	some	fixed	upper	bound	on	the	amount	of	computation	that	can	occur	before	a
glk_tick()	(or	glk_select())	occurs.	In	a	VM	interpreter,	where	the	VM	code	might	contain	an	infinite	loop,	this	is	critical.
In	a	C	program,	you	can	often	eyeball	it.]

[But	the	next	version	of	model.c	will	have	a	glk_tick()	in	the	ornate	printing	loop	of	verb_yada().	Just	to	make	the	point.]

1.5.	Basic	Types

For	simplicity,	all	the	arguments	used	in	Glk	calls	are	of	a	very	few	types.

·		32-bit	unsigned	integer.	Unsigned	integers	are	used	wherever	possible,	which	is	nearly	everywhere.	This	type	is
called	"glui32".

·		32-bit	signed	integer.	This	type	is	called	"glsi32".	Rarely	used.
·		References	to	library	objects.	These	are	pointers	to	opaque	C	structures;	each	library	will	use	different	structures,	so

you	can	not	and	should	not	try	to	manipulate	their	contents.	See	section	1.6,	"Opaque	Objects".
·		Pointer	to	one	of	the	above	types.
·		Pointer	to	a	structure	which	consists	entirely	of	the	above	types.
·		Unsigned	char.	This	is	used	only	for	Latin-1	text	characters;	see	 section	2,	"Character	Encoding".
·		Pointer	to	char.	Sometimes	this	means	a	null-terminated	string;	sometimes	an	unterminated	buffer,	with	length	as	a

separate	gui32	argument.	The	documentation	says	which.
·		Pointer	to	void.	When	nothing	else	will	do.

1.6.	Opaque	Objects

Glk	keeps	track	of	a	few	classes	of	special	objects.	These	are	opaque	to	your	program;	you	always	refer	to	them	using
pointers	to	opaque	C	structures.

Currently,	these	classes	are:

·		Windows:	Screen	panels,	used	to	input	or	output	information.
·		Streams:	Data	streams,	to	which	you	can	input	or	output	text.	 [There	are	file	streams	and	window	streams,	since	you

can	output	data	to	windows	or	files.]
·		File	references:	Pointers	to	files	in	permanent	storage.	 [In	Unix	a	file	reference	is	a	pathname;	on	the	Mac,	an

FSSpec.	Actually	there's	a	little	more	information	included,	such	as	file	type	and	whether	it	is	a	text	or	binary	file.]
·		Sound	channels:	Audio	output	channels.	 [Not	all	Glk	libraries	support	sound.]

[Note	that	there	may	be	more	object	classes	in	future	versions	of	the	Glk	API.]

When	you	create	one	of	these	objects,	it	is	always	possible	that	the	creation	will	fail	(due	to	lack	of	memory,	or	some
other	OS	error.)	When	this	happens,	the	allocation	function	will	return	NULL	instead	of	a	valid	pointer.	You	should
always	test	for	this	possibility.

NULL	is	never	the	identifier	of	any	object	(window,	stream,	file	reference,	or	sound	channel).	The	value	NULL	is	often
used	to	indicate	"no	object"	or	"nothing",	but	it	is	not	a	valid	reference.	If	a	Glk	function	takes	an	object	reference	as	an
argument,	it	is	illegal	to	pass	in	NULL	unless	the	function	definition	says	otherwise.

The	glk.h	file	defines	types	"winid_t",	"strid_t",	"frefid_t",	"schanid_t"	to	store	references.	These	are	pointers	to	struct
glk_window_struct,	glk_stream_struct,	glk_fileref_struct,	and	glk_schannel_struct	respectively.	It	is,	of	course,	illegal	to
pass	one	kind	of	pointer	to	a	function	which	expects	another.

[This	is	how	you	deal	with	opaque	objects	from	a	C	program.	If	you	are	using	Glk	through	a	virtual	machine,	matters	will
probably	be	different.	Opaque	objects	may	be	represented	as	integers,	or	as	VM	objects	of	some	sort.]

1.6.1.	Rocks

Every	one	of	these	objects	(window,	stream,	file	reference,	or	sound	channel)	has	a	"rock"	value.	This	is	simply	a	32-bit
integer	value	which	you	provide,	for	your	own	purposes,	when	you	create	the	object.	[The	library	–	so	to	speak	–	stuffs
this	value	under	a	rock	for	safe-keeping,	and	gives	it	back	to	you	when	you	ask	for	it.]

[If	you	don't	know	what	to	use	the	rocks	for,	provide	0	and	forget	about	it.]

1.6.2.	Iterating	Through	Opaque	Objects

For	each	class	of	opaque	objects,	there	is	an	iterate	function,	which	you	can	use	to	obtain	a	list	of	all	existing	objects	of
that	class.	It	takes	the	form

CLASSid_t	glk_CLASS_iterate(CLASSid_t	obj,	glui32	*rockptr);

...where	CLASS	represents	one	of	the	opaque	object	classes.	 [So,	at	the	current	time,	these	are	the	functions
glk_window_iterate(),	glk_stream_iterate(),	and	glk_fileref_iterate().	There	may	be	more	classes	in	future	versions	of	the
spec;	they	all	behave	the	same.]

Calling	glk_CLASS_iterate(NULL,	r)	returns	the	first	object;	calling	glk_CLASS_iterate(obj,	r)	returns	the	next	object,
until	there	aren't	any	more,	at	which	time	it	returns	NULL.

The	rockptr	argument	is	a	pointer	to	a	location;	whenever	glk_CLASS_iterate()	returns	an	object,	the	object's	rock	is
stored	in	the	location	(*rockptr).	If	you	don't	want	the	rocks	to	be	returned,	you	may	set	rockptr	to	NULL.

You	usually	use	this	as	follows:

obj	=	glk_CLASS_iterate(NULL,	NULL);
while	(obj)	{
				/*	...do	something	with	obj...	*/
				obj	=	glk_CLASS_iterate(obj,	NULL);
}

If	you	create	or	destroy	objects	inside	this	loop,	obviously,	the	results	are	unpredictable.	However	it	is	always	legal	to
call	glk_CLASS_iterate(obj,	r)	as	long	as	obj	is	a	valid	object	id,	or	NULL.

The	order	in	which	objects	are	returned	is	entirely	arbitrary.	The	library	may	even	rearrange	the	order	every	time	you
create	or	destroy	an	object	of	the	given	class.	As	long	as	you	do	not	create	or	destroy	any	object,	the	rule	is	that
glk_CLASS_iterate(obj,	r)	has	a	fixed	result,	and	iterating	through	the	results	as	above	will	list	every	object	exactly	once.

1.7.	The	Gestalt	System

The	"gestalt"	mechanism	(cheerfully	stolen	from	the	Mac	OS)	is	a	system	by	which	the	Glk	API	can	be	upgraded	without
making	your	life	impossible.	New	capabilities	(graphics,	sound,	or	so	on)	can	be	added	without	changing	the	basic
specification.	The	system	also	allows	for	"optional"	capabilities	–	those	which	not	all	Glk	library	implementations	will
support	–	and	allows	you	to	check	for	their	presence	without	trying	to	infer	them	from	a	version	number.

The	basic	idea	is	that	you	can	request	information	about	the	capabilities	of	the	API,	by	calling	the	gestalt	functions:

glui32	glk_gestalt(glui32	sel,	glui32	val);
glui32	glk_gestalt_ext(glui32	sel,	glui32	val,	glui32	*arr,	glui32	arrlen);

The	selector	(the	"sel"	argument)	tells	which	capability	you	are	requesting	information	about;	the	other	three	arguments

are	additional	information,	which	may	or	may	not	be	meaningful.	The	arr	and	arrlen	arguments	of	glk_gestalt_ext()	are
always	optional;	you	may	always	pass	NULL	and	0,	if	you	do	not	want	whatever	information	they	represent.	glk_gestalt()
is	simply	a	shortcut	for	this;	glk_gestalt(x,	y)	is	exactly	the	same	as	glk_gestalt_ext(x,	y,	NULL,	0).

The	critical	point	is	that	if	the	Glk	library	has	never	heard	of	the	selector	sel,	it	will	return	0.	It	is	 always	safe	to	call
glk_gestalt(x,	y)	(or	glk_gestalt_ext(x,	y,	NULL,	0)).	Even	if	you	are	using	an	old	library,	which	was	compiled	before	the
given	capability	was	imagined,	you	can	test	for	the	capability	by	calling	glk_gestalt();	the	library	will	correctly	indicate
that	it	does	not	support	it,	by	returning	0.

(It	is	also	safe	to	call	glk_gestalt_ext(x,	y,	z,	zlen)	for	an	unknown	selector	x,	where	z	is	not	NULL,	as	long	as	z	points	at
an	array	of	at	least	zlen	elements.	The	selector	will	be	careful	not	to	write	beyond	that	point	in	the	array,	if	it	writes	to
the	array	at	all.)

(If	a	selector	does	not	use	the	second	argument,	you	should	always	pass	0;	do	not	assume	that	the	second	argument	is
simply	ignored.	This	is	because	the	selector	may	be	extended	in	the	future.	You	will	continue	to	get	the	current	behavior
if	you	pass	0	as	the	second	argument,	but	other	values	may	produce	other	behavior.)

Gestalt	selectors	numbered	0x1400	to	0x14FF	are	reserved	for	extension	projects	by	ZZO38.	These	are	not	documented
here.

1.8.	The	Version	Number

For	an	example	of	the	gestalt	mechanism,	consider	the	selector	gestalt_Version.	If	you	do

glui32	res;
res	=	glk_gestalt(gestalt_Version,	0);

res	will	be	set	to	a	32-bit	number	which	encodes	the	version	of	the	Glk	spec	which	the	library	implements.	The	upper	16
bits	stores	the	major	version	number;	the	next	8	bits	stores	the	minor	version	number;	the	low	8	bits	stores	an	even
more	minor	version	number,	if	any.	[So	the	version	number	78.2.11	would	be	encoded	as	0x004E020B.]

The	current	Glk	specification	version	is	0.7.5,	so	this	selector	will	return	0x00000705.

glui32	res;
res	=	glk_gestalt_ext(gestalt_Version,	0,	NULL,	0);

does	exactly	the	same	thing.	Note	that,	in	either	case,	the	second	argument	is	not	used;	so	you	should	always	pass	0	to
avoid	future	surprises.

1.9.	Other	API	Conventions

The	glk.h	header	file	is	the	same	on	all	platforms,	with	the	sole	exception	of	the	typedef	of	glui32	and	glsi32.	These	will
always	be	defined	as	32-bit	unsigned	and	signed	integer	types,	which	may	be	"long"	or	"int"	or	some	other	C	definition.

Note	that	all	constants	are	#defines.	All	functions	are	currently	actual	function	declarations	(as	opposed	to	macros),	but
this	may	change	in	future	Glk	revisions.	As	in	the	standard	C	library,	if	Glk	function	is	defined	by	a	macro,	an	actual
function	of	the	same	name	will	also	be	available.

Functions	that	return	or	generate	boolean	values	will	produce	only	0	(FALSE)	or	1	(TRUE).	Functions	that	accept	boolean
arguments	will	accept	any	value,	with	zero	indicating	FALSE	and	nonzero	indicating	TRUE.

NULL	(when	used	in	this	document)	refers	to	the	C	null	pointer.	As	stated	above,	it	is	illegal	to	pass	NULL	to	a	function
which	is	expecting	a	valid	object	reference,	unless	the	function	definition	says	otherwise.

Some	functions	have	pointer	arguments,	acting	as	"variable"	or	"reference"	arguments;	the	function's	intent	is	to	return
some	value	in	the	space	pointed	to	by	the	argument.	Unless	the	function	says	otherwise,	it	is	legal	to	pass	NULL	to
indicate	that	you	do	not	care	about	that	value.

2.	Character	Encoding

Glk	has	two	separate,	but	parallel,	APIs	for	managing	text	input	and	output.	The	basic	functions	deals	entirely	in	8-bit
characters;	their	arguments	are	arrays	of	bytes	(octets).	These	functions	all	assume	the	Latin-1	character	encoding.
Equivalently,	they	may	be	said	to	use	code	points	U+00..U+FF	of	http://unicode.org/.

file:///Users/zarf/Downloads/src/specs/glk-dev-new/dist/Unicode

Latin-1	is	an	8-bit	character	encoding;	it	maps	numeric	codes	in	the	range	0	to	255	into	printed	characters.	The	values
from	32	to	126	are	the	standard	printable	ASCII	characters	('	'	to	'~').	Values	0	to	31	and	127	to	159	are	reserved	for
control	characters,	and	have	no	printed	equivalent.

[Note	that	the	basic	Glk	text	API	does	not	use	UTF-8,	or	any	other	Unicode	character	form.	Each	character	is	represented
by	a	single	byte	–	even	characters	in	the	128..255	range.]

The	extended,	or	"Unicode",	Glk	functions	deal	entirely	in	32-bit	words.	They	take	arrays	of	words,	not	bytes,	as
arguments.	They	can	therefore	cope	with	any	Unicode	code	point.	The	extended	functions	have	names	ending	in	"_uni".

[Since	these	functions	deal	in	arrays	of	32-bit	words,	they	can	be	said	to	use	the	UTF-32	character	encoding	form.	(But
not	the	UTF-32	character	encoding	scheme	–	that's	a	stream	of	bytes	which	must	be	interpreted	in	big-endian	or	little-
endian	mode.	Glk	Unicode	functions	operate	on	long	integers,	not	bytes.)	UTF-32	is	also	known	as	UCS-4,	according	to
the	Unicode	spec	(appendix	C.2),	modulo	some	semantic	requirements	which	we	will	not	deal	with	here.	For	practical
purposes,	we	can	ignore	the	whole	encoding	issue,	and	assume	that	we	are	dealing	with	sequences	of	numeric	code
points.]

[Why	not	UTF-8?	It	is	a	reasonable	bare-bones	compression	algorithm	for	Unicode	character	streams;	but	IF	systems
typically	have	their	own	compression	models	for	text.	Compositing	the	two	ideas	causes	more	problems	than	it	solves.
The	other	advantage	of	UTF-8	is	that	7-bit	ASCII	is	automatically	valid	UTF-8;	but	this	is	not	compelling	for	IF	systems,	in
which	the	compiler	can	be	tasked	with	generating	consistent	textual	data.	And	UTF-8	is	a	variable-width	encoding.
Nobody	ever	wept	at	the	prospect	of	avoiding	that	kettle	of	eels.]

[What	about	bi-directional	text?	It's	a	good	idea,	and	may	show	up	in	future	versions	of	this	document.	It	is	not	in	this
version	because	we	want	to	get	something	simple	implemented	soon.	For	the	moment,	print	out	all	text	in	reading	order
(not	necessarily	left-to-right)	and	hope	for	the	best.	Current	suggestions	include	a	stylehint_Direction,	which	the	game
can	set	to	indicate	that	text	in	the	given	style	should	be	laid	out	right-to-left.	Top-to-bottom	(or	bottom-to-top)	may	be
desirable	too.	The	direction	stylehints	might	only	apply	to	full	paragraphs	(like	justification	stylehints);	or	they	might
apply	to	any	text,	thus	requiring	the	library	to	lay	out	"zig-zag"	blocks.	The	possibilities	remain	to	be	explored.	Page
layout	is	hard.]

[Another	possibility	is	to	let	the	library	determine	the	directionality	of	text	from	the	character	set.	This	is	not	impossible
–	MacOSX	text	widgets	do	it.	It	may	be	too	difficult.]

[In	the	meantime,	it	is	worth	noting	that	the	Windows	Glk	library	does	 not	autodetect	directionality,	but	the	CheapGlk
library	running	on	MacOSX	does.	Therefore,	there	is	no	platform-independent	way	to	handle	right-to-left	fonts	at
present.]

2.1.	Testing	for	Unicode	Capabilities

The	basic	text	functions	will	be	available	in	every	Glk	library.	The	Unicode	functions	may	or	may	not	be	available.	Before
calling	them,	you	should	use	the	following	gestalt	selectors:

glui32	res;
res	=	glk_gestalt(gestalt_Unicode,	0);

This	returns	1	if	the	core	Unicode	functions	are	available.	If	it	returns	0,	you	should	not	try	to	call	them.	They	may	print
nothing,	print	gibberish,	or	cause	a	run-time	error.	The	Unicode	functions	include	glk_buffer_to_lower_case_uni,
glk_buffer_to_upper_case_uni,	glk_buffer_to_title_case_uni,	glk_put_char_uni,	glk_put_string_uni,
glk_put_buffer_uni,	glk_put_char_stream_uni,	glk_put_string_stream_uni,	glk_put_buffer_stream_uni,
glk_get_char_stream_uni,	glk_get_buffer_stream_uni,	glk_get_line_stream_uni,	glk_request_char_event_uni,
glk_request_line_event_uni,	glk_stream_open_file_uni,	glk_stream_open_memory_uni.

If	you	are	writing	a	C	program,	there	is	an	additional	complication.	A	library	which	does	not	support	Unicode	may	not
implement	the	Unicode	functions	at	all.	Even	if	you	put	gestalt	tests	around	your	Unicode	calls,	you	may	get	link-time
errors.	If	the	glk.h	file	is	so	old	that	it	does	not	declare	the	Unicode	functions	and	constants,	you	may	even	get	compile-
time	errors.

To	avoid	this,	you	can	perform	a	preprocessor	test	for	the	existence	of	GLK_MODULE_UNICODE.	If	this	is	defined,	so
are	all	the	Unicode	functions	and	constants.	If	not,	not.

glui32	res;
res	=	glk_gestalt(gestalt_UnicodeNorm,	0);

This	returns	1	if	the	Unicode	normalization	functions	are	available.	If	it	returns	0,	you	should	not	try	to	call	them.	The
Unicode	normalization	functions	include	glk_buffer_canon_decompose_uni	and	glk_buffer_canon_normalize_uni.

The	equivalent	preprocessor	test	for	these	functions	is	GLK_MODULE_UNICODE_NORM.

2.2.	Output

When	you	are	sending	text	to	a	window,	or	to	a	file	open	in	text	mode,	you	can	print	any	of	the	printable	Latin-1
characters:	32	to	126,	160	to	255.	You	can	also	print	the	newline	character	(linefeed,	control-J,	decimal	10,	hex	0x0A.)

It	is	not	legal	to	print	any	other	control	characters	(0	to	9,	11	to	31,	127	to	159).	You	may	not	print	even	common
formatting	characters	such	as	tab	(control-I),	carriage	return	(control-M),	or	page	break	(control-L).	[As	usual,	the
behavior	of	the	library	when	you	print	an	illegal	character	is	undefined.	It	is	preferable	that	the	library	display	a
numeric	code,	such	as	"\177"	or	"0x7F",	to	warn	the	user	that	something	illegal	has	occurred.	The	library	may	skip	illegal
characters	entirely;	but	you	should	not	rely	on	this.]

Printing	Unicode	characters	above	255	is	a	more	complicated	matter	–	too	complicated	to	be	covered	precisely	by	this
specification.	Refer	to	the	Unicode	specification,	and	good	luck	to	you.

[Unicode	combining	characters	are	a	particular	nuisance.	Printing	a	combining	character	may	alter	the	appearance	of
the	previous	character	printed.	The	library	should	be	prepared	to	cope	with	this	–	even	if	the	characters	are	printed	by
two	separate	glk_put_char_uni()	calls.]

Note	that	when	you	are	sending	data	to	a	file	open	in	binary	mode,	you	can	print	any	byte	value,	without	restriction.	See
section	5.6.3,	"File	Streams".

A	particular	implementation	of	Glk	may	not	be	able	to	display	all	the	printable	characters.	It	is	guaranteed	to	be	able	to
display	the	ASCII	characters	(32	to	126,	and	the	newline	10.)	Other	characters	may	be	printed	correctly,	printed	as	multi-
character	combinations	(such	as	"ae"	for	the	one-character	"ae"	ligature	(æ)),	or	printed	as	some	placeholder	character
(such	as	a	bullet	or	question	mark,	or	even	an	octal	code.)

You	can	test	for	this	by	using	the	gestalt_CharOutput	selector.	If	you	set	ch	to	a	character	code	(Latin-1	or	higher),	and
call

glui32	res,	len;
res	=	glk_gestalt_ext(gestalt_CharOutput,	ch,	&len,	1);

then	res	will	be	one	of	the	following	values:

·		gestalt_CharOutput_CannotPrint:	The	character	cannot	be	meaningfully	printed.	If	you	try,	the	player	may	see
nothing,	or	may	see	a	placeholder.

·		gestalt_CharOutput_ExactPrint:	The	character	will	be	printed	exactly	as	defined.
·		gestalt_CharOutput_ApproxPrint:	The	library	will	print	some	approximation	of	the	character.	It	will	be	more	or	less

right,	but	it	may	not	be	precise,	and	it	may	not	be	distinguishable	from	other,	similar	characters.	(Examples:	"ae"	for
the	one-character	"ae"	ligature	(æ),	"e"	for	an	accented	"e"	(è),	"|"	for	a	broken	vertical	bar	(¦).)

In	all	cases,	len	(the	glui32	value	pointed	at	by	the	third	argument)	will	be	the	number	of	actual	glyphs	which	will	be
used	to	represent	the	character.	In	the	case	of	gestalt_CharOutput_ExactPrint,	this	will	always	be	1;	for
gestalt_CharOutput_CannotPrint,	it	may	be	0	(nothing	printed)	or	higher;	for	gestalt_CharOutput_ApproxPrint,	it	may
be	1	or	higher.	This	information	may	be	useful	when	printing	text	in	a	fixed-width	font.

[As	described	in	section	1.9,	"Other	API	Conventions" ,	you	may	skip	this	information	by	passing	NULL	as	the	third
argument	in	glk_gestalt_ext(),	or	by	calling	glk_gestalt()	instead.]

This	selector	will	always	return	gestalt_CharOutput_CannotPrint	if	ch	is	an	unprintable	eight-bit	character	(0	to	9,	11	to
31,	127	to	159.)

[Make	sure	you	do	not	get	confused	by	signed	byte	values.	If	you	set	a	"signed	char"	variable	ch	to	0xFE,	the	small-thorn
character	(þ),	it	will	wind	up	as	-2.	(The	same	is	true	of	a	"char"	variable,	if	your	compiler	treats	"char"	as	signed!)	If	you
then	call	
				res	=	glk_gestalt(gestalt_CharOutput,	ch);
then	(by	the	definition	of	C/C++)	ch	will	be	 sign-extended	to	0xFFFFFFFE,	which	is	not	a	legitimate	character,	even	in
Unicode.	You	should	write	

				res	=	glk_gestalt(gestalt_CharOutput,	(unsigned	char)ch);
instead.]

[Unicode	includes	the	concept	of	non-spacing	or	combining	characters,	which	do	not	represent	glyphs;	and	double-
width	characters,	whose	glyphs	take	up	two	spaces	in	a	fixed-width	font.	Future	versions	of	this	spec	may	recognize
these	concepts	by	returning	a	len	of	0	or	2	when	gestalt_CharOutput_ExactPrint	is	used.	For	the	moment,	we	are
adhering	to	a	policy	of	"simple	stuff	first".]

2.3.	Line	Input

You	can	request	that	the	player	enter	a	line	of	text.	See	section	4.2,	"Line	Input	Events".

This	text	will	be	placed	in	a	buffer	of	your	choice.	There	is	no	length	field	or	null	terminator	in	the	buffer.	(The	length	of
the	text	is	returned	as	part	of	the	line-input	event.)

If	you	use	the	basic	text	API,	the	buffer	will	contain	only	printable	Latin-1	characters	(32	to	126,	160	to	255).

A	particular	implementation	of	Glk	may	not	be	able	to	accept	all	Latin-1	printable	characters	as	input.	It	is	guaranteed	to
be	able	to	accept	the	ASCII	characters	(32	to	126.)

You	can	test	for	this	by	using	the	gestalt_LineInput	selector.	If	you	set	ch	to	a	character	code,	and	call

glui32	res;
res	=	glk_gestalt(gestalt_LineInput,	ch);

then	res	will	be	TRUE	(1)	if	that	character	can	be	typed	by	the	player	in	line	input,	and	FALSE	(0)	if	not.	Note	that	if	ch	is
a	nonprintable	Latin-1	character	(0	to	31,	127	to	159),	then	this	is	guaranteed	to	return	FALSE.

2.4.	Character	Input

You	can	request	that	the	player	hit	a	single	key.	See	 section	4.1,	"Character	Input	Events".

If	you	use	the	basic	text	API,	the	character	code	which	is	returned	can	be	any	value	from	0	to	255.	The	printable
character	codes	have	already	been	described.	The	remaining	codes	are	typically	control	codes:	control-A	to	control-Z
and	a	few	others.

There	are	also	a	number	of	special	codes,	representing	special	keyboard	keys,	which	can	be	returned	from	a	char-input
event.	These	are	represented	as	32-bit	integers,	starting	with	4294967295	(0xFFFFFFFF)	and	working	down.	The	special
key	codes	are	defined	in	the	glk.h	file.	They	include:

·		keycode_Left,	keycode_Right,	keycode_Up,	keycode_Down	(arrow	keys)
·		keycode_Return	(return	or	enter)
·		keycode_Delete	(delete	or	backspace)
·		keycode_Escape
·		keycode_Tab
·		keycode_PageUp
·		keycode_PageDown
·		keycode_Home
·		keycode_End
·		keycode_Func1,	keycode_Func2,	keycode_Func3,	...	keycode_Func12	(twelve	function	keys)
·		keycode_Unknown	(any	key	which	has	no	Latin-1	or	special	code)

Various	implementations	of	Glk	will	vary	widely	in	which	characters	the	player	can	enter.	The	most	obvious	limitation	is
that	some	characters	are	mapped	to	others.	For	example,	most	keyboards	return	a	control-I	code	when	the	tab	key	is
pressed.	The	Glk	library,	if	it	can	recognize	this	at	all,	will	generate	a	keycode_Tab	event	(value	0xFFFFFFF7)	when	this
occurs.	Therefore,	for	these	keyboards,	no	keyboard	key	will	generate	a	control-I	event	(value	9.)	The	Glk	library	will
probably	map	many	of	the	control	codes	to	the	other	special	keycodes.

[On	the	other	hand,	the	library	may	be	very	clever	and	discriminate	between	tab	and	control-I.	This	is	legal.	The	idea	is,
however,	that	if	your	program	asks	the	player	to	"press	the	tab	key",	you	should	check	for	a	keycode_Tab	event	as
opposed	to	a	control-I	event.]

Some	characters	may	not	be	enterable	simply	because	they	do	not	exist.	 [Not	all	keyboards	have	a	home	or	end	key.	A

pen-based	platform	may	not	recognize	any	control	characters	at	all.]

Some	characters	may	not	be	enterable	because	they	are	reserved	for	the	purposes	of	the	interface.	For	example,	the
Mac	Glk	library	reserves	the	tab	key	for	switching	between	different	Glk	windows.	Therefore,	on	the	Mac,	the	library
will	never	generate	a	keycode_Tab	event	or	a	control-I	event.

[Note	that	the	linefeed	or	control-J	character,	which	is	the	only	 printable	control	character,	is	probably	not	 typable.	This
is	because,	in	most	libraries,	it	will	be	converted	to	keycode_Return.	Again,	you	should	check	for	keycode_Return	if	your
program	asks	the	player	to	"press	the	return	key".]

[The	delete	and	backspace	keys	are	merged	into	a	single	keycode	because	they	have	such	an	astonishing	history	of	being
confused	in	the	first	place...	this	spec	formally	waives	any	desire	to	define	the	difference.	Of	course,	a	library	is	free	to
distinguish	delete	and	backspace	during	line	input.	This	is	when	it	matters	most;	conflating	the	two	during	character
input	should	not	be	a	large	problem.]

You	can	test	for	this	by	using	the	gestalt_CharInput	selector.	If	you	set	ch	to	a	character	code,	or	a	special	code	(from
0xFFFFFFFF	down),	and	call

glui32	res;
res	=	glk_gestalt(gestalt_CharInput,	ch);

then	res	will	be	TRUE	(1)	if	that	character	can	be	typed	by	the	player	in	character	input,	and	FALSE	(0)	if	not.

[Glk	porters	take	note:	it	is	not	a	goal	to	be	able	to	generate	every	single	possible	key	event.	If	the	library	says	that	it	can
generate	a	particular	keycode,	then	game	programmers	will	assume	that	it	is	available,	and	ask	players	to	use	it.	If	a
keycode_Home	event	can	only	be	generated	by	typing	escape-control-A,	and	the	player	does	not	know	this,	the	player
will	be	lost	when	the	game	says	"Press	the	home	key	to	see	the	next	hint."	It	is	better	for	the	library	to	say	that	it	cannot
generate	a	keycode_Home	event;	that	way	the	game	can	detect	the	situation	and	ask	the	user	to	type	H	instead.]

[Of	course,	it	is	better	not	to	rely	on	obscure	keys	in	any	case.	The	arrow	keys	and	return	are	nearly	certain	to	be
available;	the	others	are	of	gradually	decreasing	reliability,	and	you	(the	game	programmer)	should	not	depend	on
them.	You	must	be	certain	to	check	for	the	ones	you	want	to	use,	 including	the	arrow	keys	and	return,	and	be	prepared
to	use	different	keys	in	your	interface	if	gestalt_CharInput	says	they	are	not	available.]

2.5.	Upper	and	Lower	Case

You	can	convert	Latin-1	characters	between	upper	and	lower	case	with	two	Glk	utility	functions:

unsigned	char	glk_char_to_lower(unsigned	char	ch);
unsigned	char	glk_char_to_upper(unsigned	char	ch);

These	have	a	few	advantages	over	the	standard	ANSI	tolower()	and	toupper()	macros.	They	work	for	the	entire	Latin-1
character	set,	including	accented	letters;	they	behave	consistently	on	all	platforms,	since	they're	part	of	the	Glk	library;
and	they	are	safe	for	all	characters.	That	is,	if	you	call	glk_char_to_lower()	on	a	lower-case	character,	or	a	character
which	is	not	a	letter,	you'll	get	the	argument	back	unchanged.

The	case-sensitive	characters	in	Latin-1	are	the	ranges	0x41..0x5A,	0xC0..0xD6,	0xD8..0xDE	(upper	case)	and	the	ranges
0x61..0x7A,	0xE0..0xF6,	0xF8..0xFE	(lower	case).	These	are	arranged	in	parallel;	so	glk_char_to_lower()	will	add	0x20	to
values	in	the	upper-case	ranges,	and	glk_char_to_upper()	will	subtract	0x20	from	values	in	the	lower-case	ranges.

Unicode	character	conversion	is	trickier,	and	must	be	applied	to	character	arrays,	not	single	characters.

glui32	glk_buffer_to_lower_case_uni(glui32	*buf,	glui32	len,	glui32	numchars);
glui32	glk_buffer_to_upper_case_uni(glui32	*buf,	glui32	len,	glui32	numchars);
glui32	glk_buffer_to_title_case_uni(glui32	*buf,	glui32	len,	glui32	numchars,	glui32	lowerrest);

These	functions	provide	two	length	arguments	because	a	string	of	Unicode	characters	may	expand	when	its	case
changes.	The	len	argument	is	the	available	length	of	the	buffer;	numchars	is	the	number	of	characters	in	the	buffer
initially.	(So	numchars	must	be	less	than	or	equal	to	len.	The	contents	of	the	buffer	after	numchars	do	not	affect	the
operation.)

The	functions	return	the	number	of	characters	after	conversion.	If	this	is	greater	than	len,	the	characters	in	the	array
will	be	safely	truncated	at	len,	but	the	true	count	will	be	returned.	(The	contents	of	the	buffer	after	the	returned	count
are	undefined.)

The	lower_case	and	upper_case	functions	do	what	you'd	expect:	they	convert	every	character	in	the	buffer	(the	first
numchars	of	them)	to	its	upper	or	lower-case	equivalent,	if	there	is	such	a	thing.

The	title_case	function	has	an	additional	(boolean)	flag.	If	the	flag	is	zero,	the	function	changes	the	first	character	of	the
buffer	to	upper-case,	and	leaves	the	rest	of	the	buffer	unchanged.	If	the	flag	is	nonzero,	it	changes	the	first	character	to
upper-case	and	the	rest	to	lower-case.

See	the	Unicode	spec	(chapter	3.13,	chapter	4.2,	etc)	for	the	exact	definitions	of	upper,	lower,	and	title-case	mapping.

[Unicode	has	some	strange	case	cases.	For	example,	a	combined	character	that	looks	like	"ss"	might	properly	be	upper-
cased	into	two	"S"	characters.	Title-casing	is	even	stranger;	"ss"	(at	the	beginning	of	a	word)	might	be	title-cased	into	a
different	combined	character	that	looks	like	"Ss".	The	glk_buffer_to_title_case_uni()	function	is	actually	title-casing	the
first	character	of	the	buffer.	If	it	makes	a	difference.]

[Earlier	drafts	of	this	spec	had	a	separate	function	which	title-cased	the	first	character	of	every	 word	in	the	buffer.	I	took
this	out	after	reading	Unicode	Standard	Annex	#29,	which	explains	how	to	divide	a	string	into	words.	If	you	want	it,	feel
free	to	implement	it.]

2.6.	Unicode	String	Normalization

Comparing	Unicode	strings	is	difficult,	because	there	can	be	several	ways	to	represent	a	piece	of	text	as	a	Unicode
string.	For	example,	the	one-character	string	"è"	(an	accented	"e")	will	be	displayed	the	same	as	the	two-character	string
containing	"e"	followed	by	Unicode	character	0x0300	(COMBINING	GRAVE	ACCENT).	These	strings	should	be
considered	equal.

Therefore,	a	Glk	program	that	accepts	line	input	should	convert	its	text	to	a	normalized	form	before	parsing	it.	These
functions	offer	those	conversions.	The	algorithms	are	defined	by	the	Unicode	spec	(chapter	3.7)	and
http://www.unicode.org/reports/tr15/.

glui32	glk_buffer_canon_decompose_uni(glui32	*buf,	glui32	len,	glui32	numchars);

This	transforms	a	string	into	its	canonical	decomposition	("Normalization	Form	D").	Effectively,	this	takes	apart
multipart	characters	into	their	individual	parts.	For	example,	it	would	convert	"è"	(character	0xE8,	an	accented	"e")	into
the	two-character	string	containing	"e"	followed	by	Unicode	character	0x0300	(COMBINING	GRAVE	ACCENT).	If	a	single
character	has	multiple	accent	marks,	they	are	also	rearranged	into	a	standard	order.

glui32	glk_buffer_canon_normalize_uni(glui32	*buf,	glui32	len,	glui32	numchars);

This	transforms	a	string	into	its	canonical	decomposition	and	recomposition	("Normalization	Form	C").	Effectively,	this
takes	apart	multipart	characters,	and	then	puts	them	back	together	in	a	standard	way.	For	example,	this	would	convert
the	two-character	string	containing	"e"	followed	by	Unicode	character	0x0300	(COMBINING	GRAVE	ACCENT)	into	the
one-character	string	"è"	(character	0xE8,	an	accented	"e").

The	canon_normalize	function	includes	decomposition	as	part	of	its	implementation.	You	never	have	to	call	both
functions	on	the	same	string.

Both	of	these	functions	are	idempotent.

These	functions	provide	two	length	arguments	because	a	string	of	Unicode	characters	may	expand	when	it	is
transformed.	The	len	argument	is	the	available	length	of	the	buffer;	numchars	is	the	number	of	characters	in	the	buffer
initially.	(So	numchars	must	be	less	than	or	equal	to	len.	The	contents	of	the	buffer	after	numchars	do	not	affect	the
operation.)

The	functions	return	the	number	of	characters	after	transformation.	If	this	is	greater	than	len,	the	characters	in	the
array	will	be	safely	truncated	at	len,	but	the	true	count	will	be	returned.	(The	contents	of	the	buffer	after	the	returned
count	are	undefined.)

[The	Unicode	spec	also	defines	stronger	forms	of	these	functions,	called	"compatibility	decomposition	and
recomposition"	("Normalization	Form	KD"	and	"Normalization	Form	KC".)	These	do	all	of	the	accent-mangling	described
above,	but	they	also	transform	many	other	obscure	Unicode	characters	into	more	familiar	forms.	For	example,	they
split	ligatures	apart	into	separate	letters.	They	also	convert	Unicode	display	variations	such	as	script	letters,	circled
letters,	and	half-width	letters	into	their	common	forms.]

file:///Users/zarf/Downloads/src/specs/glk-dev-new/dist/Unicode%20Standard%20Annex%20#15

[The	Glk	spec	does	not	currently	provide	these	stronger	transformations.	Glk's	expected	use	of	Unicode	normalization	is
for	line	input,	and	an	OS	facility	for	line	input	will	generally	not	produce	these	alternate	character	forms	(unless	the
user	goes	out	of	his	way	to	type	them).	Therefore,	the	need	for	these	transformations	does	not	seem	to	be	worth	the
extra	data	table	space.]

2.6.1.	A	Note	on	Unicode	Case-Folding	and	Normalization

With	all	of	these	Unicode	transformations	hovering	about,	an	author	might	reasonably	ask	about	the	right	way	to	handle
line	input.	Our	recommendation	is:	call	glk_buffer_to_lower_case_uni(),	followed	by
glk_buffer_canon_normalize_uni(),	and	then	parse	the	result.	The	parsing	process	should	of	course	match	against
strings	that	have	been	put	through	the	same	process.

The	Unicode	spec	(chapter	3.13)	gives	a	different,	three-step	process:	decomposition,	case-folding,	and	decomposition
again.	Our	recommendation	comes	through	a	series	of	practical	compromises:

·		The	initial	decomposition	is	only	necessary	because	of	a	historical	error	in	the	Unicode	spec:	character	0x0345
(COMBINING	GREEK	YPOGEGRAMMENI)	behaves	inconsistently.	We	ignore	this	case,	and	skip	this	step.

·		Case-folding	is	a	slightly	different	operation	from	lower-casing.	(Case-folding	splits	some	combined	characters,	so
that,	for	example,	"ß"	can	match	both	"ss"	and	"SS".)	However,	Glk	does	not	currently	offer	a	case-folding	function.
We	substitute	glk_buffer_to_lower_case_uni().

·		I'm	not	sure	why	the	spec	recommends	decomposition	(glk_buffer_canon_decompose_uni())	rather	than
glk_buffer_canon_normalize_uni().	However,	composed	characters	are	the	norm	in	source	code,	and	therefore	in
compiled	Inform	game	files.	If	we	specified	decomposition,	the	compiler	would	have	to	do	extra	work;	also,	the
standard	Inform	dictionary	table	(with	its	fixed	word	length)	would	store	fewer	useful	characters.	Therefore,	we
substitute	glk_buffer_canon_normalize_uni().

[We	may	revisit	these	recommendations	in	future	versions	of	the	spec.]

3.	Windows

On	most	platforms,	the	program/library	combination	will	appear	to	the	player	in	a	window	–	either	a	window	which
covers	the	entire	screen,	or	one	which	shares	screen	space	with	other	windows	in	a	multi-programming	environment.
Obviously	your	program	does	not	have	worry	about	the	details	of	this.	The	Glk	screen	space	is	a	rectangle,	which	you	can
divide	into	panels	for	various	purposes.	It	is	these	panels	which	I	will	refer	to	as	"windows"	hereafter.

You	refer	to	a	window	using	an	opaque	C	structure	pointer.	See	 section	1.6,	"Opaque	Objects".

A	window	has	a	type.	Currently	there	are	four	window	types:

·		Text	buffer	windows:	A	stream	of	text.	 [The	"story	window"	of	an	Infocom	game.] 	You	can	only	print	at	the	end	of	the
stream,	and	input	a	line	of	text	at	the	end	of	the	stream.

·		Text	grid	windows:	A	grid	of	characters	in	a	fixed-width	font.	 [The	"status	window"	of	an	Infocom	game.] 	You	can
print	anywhere	in	the	grid.

·		Graphics	windows:	A	grid	of	colored	pixels.	Graphics	windows	do	not	support	text	output,	but	there	are	image
commands	to	draw	in	them.	Graphics	windows	can	accept	character	(keystroke)	input,	but	not	line	input.	[This	is	an
optional	capability;	not	all	Glk	libraries	support	graphics.	See	section	7.4,	"Testing	for	Graphics	Capabilities".]

·		Blank	windows:	A	blank	window.	Blank	windows	support	neither	input	nor	output.	 [They	exist	mostly	to	be	an
example	of	a	"generic"	window.	You	are	unlikely	to	want	to	use	them.]

As	Glk	is	an	expanding	system,	more	window	types	may	be	added	in	the	future.	Therefore,	it	is	important	to	remember
that	not	all	window	types	will	necessarily	be	available	under	all	Glk	libraries.

There	is	one	other	special	type	of	window,	the	pair	window.	Pair	windows	are	created	by	Glk	as	part	of	the	system	of
window	arrangement.	You	cannot	create	them	yourself.	See	section	3.5.2,	"Pair	Windows".

Every	window	has	a	rock.	This	is	a	value	you	provide	when	the	window	is	created;	you	can	use	it	however	you	want.	See
section	1.6.1,	"Rocks".

When	Glk	starts	up,	there	are	no	windows.

[When	I	say	there	are	no	windows,	I	mean	there	are	no	Glk	windows.	In	a	multiprogramming	environment,	such	as	X	or
MacOS,	there	may	be	an	application	window	visible;	this	is	the	screen	space	that	will	contain	all	the	Glk	windows	that
you	create.	But	at	first,	this	screen	space	is	empty	and	unused.]

Without	a	window,	you	cannot	do	any	kind	of	input	or	output;	so	the	first	thing	you'll	want	to	do	is	create	one.	See
section	3.2,	"Window	Opening,	Closing,	and	Constraints" .

You	can	create	as	many	windows	as	you	want,	of	any	types.	You	control	their	arrangement	and	sizes	through	a	fairly
flexible	system	of	calls.	See	section	3.1,	"Window	Arrangement" .

You	can	close	any	windows	you	want.	You	can	even	close	all	the	windows,	which	returns	you	to	the	original	startup
state.

You	can	request	input	from	any	or	all	windows.	Input	can	be	mouse	input	(on	platforms	which	support	a	mouse),	single-
character	input,	or	input	of	an	entire	line	of	text.	It	is	legal	to	request	input	from	several	windows	at	the	same	time.	The
library	will	have	some	interface	mechanism	for	the	player	to	control	which	window	he	is	typing	in.

3.1.	Window	Arrangement

The	Way	of	Window	Arrangement	is	fairly	complicated.	I'll	try	to	explain	it	coherently.	 [If	you	are	reading	this
document	to	get	an	overview	of	Glk,	by	all	means	skip	forward	to	section	3.5,	"The	Types	of	Windows".	Come	back	here
later.]

Originally,	there	are	no	windows.	You	can	create	a	window,	which	will	take	up	the	entire	available	screen	area.	You	can
then	split	this	window	in	two.	One	of	the	halves	is	the	original	window;	the	other	half	is	new,	and	can	be	of	any	type	you
want.	You	can	control	whether	the	new	window	is	left,	right,	above,	or	below	the	original	one.	You	can	also	control	how
the	split	occurs.	It	can	be	50-50,	or	70-30,	or	any	other	percentage	split.	Or,	you	can	give	a	fixed	width	to	the	new
window,	and	allow	the	old	one	to	take	up	the	rest	of	the	available	space.	Or	you	can	give	a	fixed	width	to	the	old	window,
and	let	the	new	one	take	up	the	rest	of	the	space.

Now	you	have	two	windows.	In	exactly	the	same	way,	you	can	split	either	of	them	–	the	original	window,	or	the	one	you
just	created.	Whichever	one	you	split	becomes	two,	which	together	take	up	the	same	space	that	the	one	did	before.

You	can	repeat	this	as	often	as	you	want.	Every	time	you	split	a	window,	one	new	window	is	created.	Therefore,	the	call
that	does	this	is	called	glk_window_open().	[It	might	have	been	less	confusing	to	call	it	"glk_split_window"	–	or	it	might
have	been	more	confusing.	I	picked	one.]

It	is	important	to	remember	that	the	order	of	splitting	matters.	If	you	split	twice	times,	you	don't	have	a	trio	of	windows;
you	have	a	pair	with	another	pair	on	one	side.	Mathematically,	the	window	structure	is	a	binary	tree.

Example	time.	Say	you	do	two	splits,	each	a	50-50	percentage	split.	You	start	with	the	original	window	A,	and	split	that
into	A	and	B;	then	you	split	B	into	B	and	C.

+---------+
|									|							O
|				A				|						/	\
|									|					A			O
+---------+								/	\
|				B				|							B			C
+---------+
|				C				|
+---------+

Or,	you	could	split	A	into	A	and	B,	and	then	split	A	again	into	A	and	C.

+---------+
|				A				|							O
+---------+						/	\
|				C				|					O			B
+---------+				/	\
|									|			A			C
|				B				|
|									|
+---------+

I'm	using	the	simplest	possible	splits	in	the	examples	above.	Every	split	is	50-50,	and	the	new	window	of	the	pair	is
always	below	the	original	one	(the	one	that	gets	split.)	You	can	get	fancier	than	that.	Here	are	three	more	ways	to
perform	the	first	example;	all	of	them	have	the	same	tree	structure,	but	look	different	on	the	screen.

+---------+	+---------+	+---------+
|									|	|				A				|	|									|					O
|				A				|	+---------+	|				A				|				/	\
|									|	|				B				|	|									|			A			O
+---------+	+---------+	+----+----+						/	\
|				C				|	|									|	|				|				|					B			C
+---------+	|				C				|	|	C		|	B		|
|				B				|	|									|	|				|				|
+---------+	+---------+	+----+----+

On	the	left,	we	turn	the	second	split	(B	into	B/C)	upside	down;	we	put	the	new	window	(C)	above	the	old	window	(B).

In	the	center,	we	mess	with	the	percentages.	The	first	split	(A	into	A/B)	is	a	25-75	split,	which	makes	B	three	times	the
size	of	A.	The	second	(B	into	B/C)	is	a	33-66	split,	which	makes	C	twice	the	size	of	B.	This	looks	rather	like	the	second
example	above,	but	has	a	different	internal	structure.

On	the	right,	the	second	split	(B	into	B/C)	is	vertical	instead	of	horizontal,	with	the	new	window	(C)	on	the	left	of	the	old
one.

The	visible	windows	on	the	Glk	screen	are	"leaf	nodes"	of	the	binary	tree;	they	hang	off	the	ends	of	the	branches	in	the
diagram.	There	are	also	the	"internal	nodes",	the	ones	at	the	forks,	which	are	marked	as	"O".	These	are	the	mysterious
pair	windows.

You	don't	create	pair	windows	directly;	they	are	created	as	a	consequence	of	window	splits.	Whenever	you	create	a	new
window,	a	new	pair	window	is	also	created	automatically.	In	the	following	two-split	process,	you	can	see	that	when	a
window	is	split,	it	is	replaced	by	a	new	pair	window,	and	moves	down	to	become	one	of	that	"O"'s	two	children.

+---+				A
|			|
|	A	|
|			|
+---+

+---+				O
|	A	|			/	\
+---+		A			B
|	B	|
+---+

+---+				O
|	A	|			/	\
+-+-+		A			O
|C|B|					/	\
+-+-+				B			C

You	can't	draw	into	a	pair	window.	It's	completely	filled	up	with	the	two	windows	it	contains.	They're	what	you	should
be	drawing	into.

Why	have	pair	windows	in	the	system	at	all?	They're	convenient	for	certain	operations.	For	example,	you	can	close	any
window	at	any	time;	but	sometimes	you	want	to	close	an	entire	nest	of	windows	at	once.	In	the	third	stage	shown,	if	you
close	the	lower	pair	window,	it	blows	away	all	its	descendents	–	both	B	and	C	–	and	leaves	just	a	single	window,	A,	which
is	what	you	started	with.

I'm	using	some	math	terminology	already,	so	I'll	explain	it	briefly.	The	"root"	of	the	tree	is	the	top	(math	trees,	like
family	trees,	grow	upside	down.)	If	there's	only	one	window,	it's	the	root;	otherwise	the	root	is	the	topmost	"O".	Every
pair	window	has	exactly	two	"children".	Other	kinds	of	windows	are	leaves	on	the	tree,	and	have	no	children.	A	window's
"descendants",	obviously,	are	its	children	and	grandchildren	and	great-grandchildren	and	so	on.	The	"parent"	and
"ancestors"	of	a	window	are	exactly	what	you'd	expect.	So	the	root	window	is	the	ancestor	of	every	other	window.

There	are	Glk	functions	to	determine	the	root	window,	and	to	determine	the	parent	of	any	given	window.	Note	that
every	window's	parent	is	a	pair	window.	(Except	for	the	root	window,	which	has	no	parent.)

A	note	about	zero-size	windows:	a	window	may	wind	up	with	a	height	or	width	of	zero.	(Because	of	a	fixed	height	of
zero,	or	a	percentage	allocation	of	zero,	or	simply	because	the	application	display	area	does	not	have	enough	space.)
The	library	should	support	this	by	hiding	the	window	and	its	contents	entirely.	Any	border	between	the	window	and	its

sibling	should	also	disappear.

[When	a	window	has	zero	size,	it	is	reasonable	for	the	library	to	stop	passing	input	events	to	it.	The	input	request	is	not
cancelled,	but	the	UI	may	not	be	able	to	give	keyboard	focus	or	mouse	events	to	a	zero-size	region	of	the	screen.
Therefore,	a	program	which	sets	a	window	to	zero	size	should	not	rely	on	input	from	it.]

3.2.	Window	Opening,	Closing,	and	Constraints

winid_t	glk_window_open(winid_t	split,	glui32	method,	glui32	size,	glui32	wintype,	glui32	rock);

If	there	are	no	windows,	the	first	three	arguments	are	meaningless.	split	 must	be	zero,	and	method	and	size	are
ignored.	wintype	is	the	type	of	window	you're	creating,	and	rock	is	the	rock	(see	section	1.6.1,	"Rocks").

If	any	windows	exist,	new	windows	must	be	created	by	splitting	existing	ones.	split	is	the	window	you	want	to	split;	this
must	not	be	zero.	method	specifies	the	direction	and	the	split	method	(see	below).	size	is	the	size	of	the	split.	wintype	is
the	type	of	window	you're	creating,	and	rock	is	the	rock.

The	winmethod	constants:

·		winmethod_Above,	winmethod_Below,	winmethod_Left,	winmethod_Right:	The	new	window	will	be	above,	below,
to	the	left,	or	to	the	right	of	the	old	one	which	was	split.

·		winmethod_Fixed,	winmethod_Proportional:	The	new	window	is	a	fixed	size,	or	a	given	proportion	of	the	old
window's	size.	(See	below.)

·		winmethod_Border,	winmethod_NoBorder:	There	should	or	should	not	be	a	visible	window	border	between	the	new
window	and	its	sibling.	(This	is	a	hint	to	the	library;	you	might	specify	NoBorder	between	two	graphics	windows	that
should	form	a	single	image.)

The	method	argument	must	be	the	logical-or	of	a	direction	constant	(winmethod_Above,	winmethod_Below,
winmethod_Left,	winmethod_Right)	and	a	split-method	constant	(winmethod_Fixed,	winmethod_Proportional).

Remember	that	it	is	possible	that	the	library	will	be	unable	to	create	a	new	window,	in	which	case	glk_window_open()
will	return	NULL.	[It	is	acceptable	to	gracefully	exit,	if	the	window	you	are	creating	is	an	important	one	–	such	as	your
first	window.	But	you	should	not	try	to	perform	any	window	operation	on	the	id	until	you	have	tested	to	make	sure	it	is
non-zero.]

The	examples	we've	seen	so	far	have	the	simplest	kind	of	size	control.	(Yes,	this	is	"below".)	Every	pair	is	a	percentage
split,	with	X	percent	going	to	one	side,	and	(100-X)	percent	going	to	the	other	side.	If	the	player	resizes	the	window,	the
whole	mess	expands,	contracts,	or	stretches	in	a	uniform	way.

As	I	said	above,	you	can	also	make	fixed-size	splits.	This	is	a	little	more	complicated,	because	you	have	to	know	how	this
fixed	size	is	measured.

Sizes	are	measured	in	a	way	which	is	different	for	each	window	type.	For	example,	a	text	grid	window	is	measured	by
the	size	of	its	fixed-width	font.	You	can	make	a	text	grid	window	which	is	fixed	at	a	height	of	four	rows,	or	ten	columns.	A
text	buffer	window	is	measured	by	the	size	of	its	font.	[Remember	that	different	windows	may	use	different	size	fonts.
Even	two	text	grid	windows	may	use	fixed-size	fonts	of	different	sizes.]	Graphics	windows	are	measured	in	pixels,	not
characters.	Blank	windows	aren't	measured	at	all;	there's	no	meaningful	way	to	measure	them,	and	therefore	you	can't
create	a	blank	window	of	a	fixed	size,	only	of	a	proportional	(percentage)	size.

So	to	create	a	text	buffer	window	which	takes	the	top	40%	of	the	original	window's	space,	you	would	execute

newwin	=	glk_window_open(win,	winmethod_Above	|	winmethod_Proportional,	40,	wintype_TextBuffer,	0);

To	create	a	text	grid	which	is	always	five	lines	high,	at	the	bottom	of	the	original	window,	you	would	do

newwin	=	glk_window_open(win,	winmethod_Below	|	winmethod_Fixed,	5,	wintype_TextGrid,	0);

Note	that	the	meaning	of	the	size	argument	depends	on	the	method	argument.	If	the	method	is	winmethod_Fixed,	it	also
depends	on	the	wintype	argument.	The	new	window	is	then	called	the	"key	window"	of	this	split,	because	its	window
type	determines	how	the	split	size	is	computed.	[For	winmethod_Proportional	splits,	you	can	still	call	the	new	window
the	"key	window".	But	the	key	window	is	not	important	for	proportional	splits,	because	the	size	will	always	be	computed
as	a	simple	ratio	of	the	available	space,	not	a	fixed	size	of	one	child	window.]

This	system	is	more	or	less	peachy	as	long	as	all	the	constraints	work	out.	What	happens	when	there	is	a	conflict?	The
rules	are	simple.	Size	control	always	flows	down	the	tree,	and	the	player	is	at	the	top.	Let's	bring	out	an	example:

+---------+
|	C:	2				|
|				rows	|							O
+---------+						/	\
|	A							|					O			B
+---------+				/	\
|									|			A			C
|	B:	50%		|
|									|
|									|
+---------+

First	we	split	A	into	A	and	B,	with	a	50%	proportional	split.	Then	we	split	A	into	A	and	C,	with	C	above,	C	being	a	text
grid	window,	and	C	gets	a	fixed	size	of	two	rows	(as	measured	in	its	own	font	size).	A	gets	whatever	remains	of	the	50%	it
had	before.

Now	the	player	stretches	the	window	vertically.

+---------+
|	C:	2				|
|				rows	|
+---------+
|	A							|
|									|
+---------+
|									|
|									|
|	B:	50%		|
|									|
|									|
+---------+

The	library	figures:	the	topmost	split,	the	original	A/B	split,	is	50-50.	So	B	gets	half	the	screen	space,	and	the	pair
window	next	to	it	(the	lower	"O")	gets	the	other	half.	Then	it	looks	at	the	lower	"O".	C	gets	two	rows;	A	gets	the	rest.	All
done.

Then	the	user	maliciously	starts	squeezing	the	window	down,	in	stages:

+---------+		+---------+		+---------+		+---------+		+---------+
|	C:	2				|		|				C				|		|				C				|		|				C				|		+---------+
|				rows	|		|									|		|									|		+---------+		+---------+
+---------+		+---------+		+---------+		+---------+		|				B				|
|	A							|		|				A				|		+---------+		|				B				|		+---------+
|									|		+---------+		|									|		|									|
+---------+		|									|		|				B				|		+---------+
|									|		|				B				|		|									|
|									|		|									|		+---------+
|	B:	50%		|		|									|
|									|		+---------+
|									|
+---------+

The	logic	remains	the	same.	B	always	gets	half	the	space.	At	stage	3,	there's	no	room	left	for	A,	so	it	winds	up	with	zero
height.	Nothing	displayed	in	A	will	be	visible.	At	stage	4,	there	isn't	even	room	in	the	upper	50%	to	give	C	its	two	rows;	so
it	only	gets	one.	Finally,	C	is	squashed	out	of	existence	as	well.	(Without	sufficient	space	to	display	a	complete	line	of
text,	it	counts	as	"zero	size".)

When	a	window	winds	up	undersized,	it	remembers	what	size	it	should	be.	In	the	example	above,	A	remembers	that	it
should	be	two	rows;	if	the	user	expands	the	window	to	the	original	size,	it	would	return	to	the	original	layout.

The	downward	flow	of	control	is	a	bit	harsh.	After	all,	in	stage	4,	there's	room	for	C	to	have	its	two	rows	if	only	B	would
give	up	some	of	its	50%.	But	this	does	not	happen.	[This	makes	life	much	easier	for	the	Glk	library.	To	determine	the
configuration	of	a	window,	it	only	needs	to	look	at	the	window's	ancestors,	never	at	its	descendants.	So	window	layout	is

a	simple	recursive	algorithm,	no	backtracking.]

What	happens	when	you	split	a	fixed-size	window?	The	resulting	pair	window	–	that	is,	the	two	new	parts	together	–
retain	the	same	size	constraint	as	the	original	window	that	was	split.	The	key	window	for	the	original	split	is	still	the	key
window	for	that	split,	even	though	it's	now	a	grandchild	instead	of	a	child.

The	easy,	and	correct,	way	to	think	about	this	is	that	the	size	constraint	is	stored	by	a	window's	parent,	not	the	window
itself;	and	a	constraint	consists	of	a	pointer	to	a	key	window	plus	a	size	value.

+---------+							+---------+									+---------+
|									|							|									|									|	C:	2				|
|									|		A				|	A:	50%		|			O1				|				rows	|					O1
|									|							|									|		/	\				+---------+				/	\
|									|							|									|	A			B			|	A							|			O2		B
|	A							|							+---------+									+---------+		/	\
|									|							|									|									|									|	A			C
		B		B
+---------+							+---------+									+---------+

The	initial	window	is	A.	After	the	first	split,	the	new	pair	window	(O1,	which	covers	the	whole	screen)	knows	that	its
new	child	(B)	is	below	A,	and	gets	50%	of	its	own	area.	(B	is	the	key	window	for	this	split,	but	a	proportional	split	doesn't
care	about	key	windows.)

After	the	second	split,	all	this	remains	true;	O1	knows	that	its	first	child	gets	50%	of	its	space,	and	B	is	O1's	key	window.
But	now	O1's	first	child	is	O2	instead	of	A.	The	newer	pair	window	(O2)	knows	that	its	first	child	(C)	is	above	the	second,
and	gets	a	fixed	size	of	two	rows.	(As	measured	in	C's	font,	because	C	is	O2's	key	window.)

If	we	split	C,	now,	the	resulting	pair	will	still	be	two	C-font	rows	high	–	that	is,	tall	enough	for	two	lines	of	whatever	font
C	displays.	For	the	sake	of	example,	we'll	do	this	vertically.

+----+----+
|	C		|	D		|
|				|				|					O1
+----+----+				/	\
|	A							|			O2		B
+---------+		/	\
|									|	A			O3
|	B							|				/	\
|									|			C			D
|									|
+---------+

O3	now	knows	that	its	children	have	a	50-50	left-right	split.	O2	is	still	committed	to	giving	its	upper	child,	O3,	two	C-font
rows.	Again,	this	is	because	C	is	O2's	key	window.	[This	turns	out	to	be	a	good	idea,	because	it	means	that	C,	the	text	grid
window,	is	still	two	rows	high.	If	O3	had	been	a	upper-lower	split,	things	wouldn't	work	out	so	neatly.	But	the	rules
would	still	apply.	If	you	don't	like	this,	don't	do	it.]

void	glk_window_close(winid_t	win,	stream_result_t	*result);

This	closes	a	window,	which	is	pretty	much	exactly	the	opposite	of	opening	a	window.	It	is	legal	to	close	all	your
windows,	or	to	close	the	root	window	(which	does	the	same	thing.)

The	result	argument	is	filled	with	the	output	character	count	of	the	window	stream.	See	 section	5,	"Streams"	and	section
5.3,	"Closing	Streams".

When	you	close	a	window	(and	it	is	not	the	root	window),	the	other	window	in	its	pair	takes	over	all	the	freed-up	area.
Let's	close	D,	in	the	current	example:

+---------+
|	C							|
|									|					O1
+---------+				/	\
|	A							|			O2		B

+---------+		/	\
|									|	A			C
|	B							|
|									|
|									|
+---------+

Notice	what	has	happened.	D	is	gone.	O3	is	gone,	and	its	50-50	left-right	split	has	gone	with	it.	The	other	size	constraints
are	unchanged;	O2	is	still	committed	to	giving	its	upper	child	two	rows,	as	measured	in	the	font	of	O2's	key	window,
which	is	C.	Conveniently,	O2's	upper	child	is	C,	just	as	it	was	before	we	created	D.	In	fact,	now	that	D	is	gone,	everything
is	back	to	the	way	it	was	before	we	created	D.

But	what	if	we	had	closed	C	instead	of	D?	We	would	have	gotten	this:

+---------+
+---------+
|									|					O1
|	A							|				/	\
|									|			O2		B
+---------+		/	\
|									|	A			D
|	B							|
|									|
|									|
+---------+

Again,	O3	is	gone.	But	D	has	collapsed	to	zero	height.	This	is	because	its	height	is	controlled	by	O2,	and	O2's	key	window
was	C,	and	C	is	now	gone.	O2	no	longer	has	a	key	window	at	all,	so	it	cannot	compute	a	height	for	its	upper	child,	so	it
defaults	to	zero.

[This	may	seem	to	be	an	inconvenient	choice.	That	is	deliberate.	You	should	not	leave	a	pair	window	with	no	key,	and
the	zero-height	default	reminds	you	not	to.	You	can	use	glk_window_set_arrangement()	to	set	a	new	split	measurement
and	key	window.	See	section	3.3,	"Changing	Window	Constraints".]

3.3.	Changing	Window	Constraints

There	are	library	functions	to	change	and	to	measure	the	size	of	a	window.

void	glk_window_get_size(winid_t	win,	glui32	*widthptr,	glui32	*heightptr);
void	glk_window_set_arrangement(winid_t	win,	glui32	method,	glui32	size,	winid_t	keywin);
void	glk_window_get_arrangement(winid_t	win,	glui32	*methodptr,	glui32	*sizeptr,	winid_t	
*keywinptr);

glk_window_get_size()	simply	returns	the	actual	size	of	the	window,	in	its	measurement	system.	As	described	in	 section
1.9,	"Other	API	Conventions",	either	widthptr	or	heightptr	can	be	NULL,	if	you	only	want	one	measurement.	 [Or,	in	fact,
both,	if	you	want	to	waste	time.]

glk_window_set_arrangement()	changes	the	size	of	an	existing	split	–	that	is,	it	changes	the	constraint	of	a	given	pair
window.	glk_window_get_arrangement()	returns	the	constraint	of	a	given	pair	window.

Consider	the	example	above,	where	D	has	collapsed	to	zero	height.	Say	D	was	a	text	buffer	window.	You	could	make	a
more	useful	layout	by	doing

winid_t	o2;
o2	=	glk_window_get_parent(d);
glk_window_set_arrangement(o2,	winmethod_Above	|	winmethod_Fixed,	3,	d);

That	would	set	the	D	(the	upper	child	of	O2)	to	be	O2's	key	window,	and	give	it	a	fixed	size	of	3	rows.

If	you	later	wanted	to	expand	D,	you	could	do

glk_window_set_arrangement(o2,	winmethod_Above	|	winmethod_Fixed,	5,	NULL);

That	expands	D	to	five	rows.	Note	that,	since	O2's	key	window	is	already	set	to	D,	it	is	not	necessary	to	provide	the
keywin	argument;	you	can	pass	NULL	to	mean	"leave	the	key	window	unchanged."

If	you	do	change	the	key	window	of	a	pair	window,	the	new	key	window	 must	be	a	descendant	of	that	pair	window.	In
the	current	example,	you	could	change	O2's	key	window	to	be	A,	but	not	B.	The	key	window	also	cannot	be	a	pair
window	itself.

glk_window_set_arrangement(o2,	winmethod_Below	|	winmethod_Fixed,	3,	NULL);

This	changes	the	constraint	to	be	on	the	 lower	child	of	O2,	which	is	A.	The	key	window	is	still	D;	so	A	would	then	be
three	rows	high	as	measured	in	D's	font,	and	D	would	get	the	rest	of	O2's	space.	That	may	not	be	what	you	want.	To	set	A
to	be	three	rows	high	as	measured	in	A's	font,	you	would	do

glk_window_set_arrangement(o2,	winmethod_Below	|	winmethod_Fixed,	3,	a);

Or	you	could	change	O2	to	a	proportional	split:

glk_window_set_arrangement(o2,	winmethod_Below	|	winmethod_Proportional,	30,	NULL);

or

glk_window_set_arrangement(o2,	winmethod_Above	|	winmethod_Proportional,	70,	NULL);

These	do	exactly	the	same	thing,	since	30%	above	is	the	same	as	70%	below.	You	don't	need	to	specify	a	key	window	with
a	proportional	split,	so	the	keywin	argument	is	NULL.	(You	could	actually	specify	either	A	or	D	as	the	key	window,	but	it
wouldn't	affect	the	result.)

Whatever	constraint	you	set,	glk_window_get_size()	will	tell	you	the	actual	window	size	you	got.

Note	that	you	can	resize	windows,	and	alter	the	Border/NoBorder	flag.	But	you	can't	flip	or	rotate	them.	You	can't	move
A	above	D,	or	change	O2	to	a	vertical	split	where	A	is	left	or	right	of	D.	[To	get	this	effect	you	could	close	one	of	the
windows,	and	re-split	the	other	one	with	glk_window_open().]

3.4.	A	Note	on	Display	Style

The	way	windows	are	displayed	is,	of	course,	entirely	up	to	the	Glk	library;	it	depends	on	what	is	natural	for	the	player's
machine.	The	borders	between	windows	may	be	black	lines,	3-D	bars,	rows	of	"#"	characters;	there	may	even	be	no
borders	at	all.	The	library	may	not	support	the	Border/NoBorder	hint,	in	which	case	every	pair	of	windows	will	have	a
visible	border	–	or	no	border	–	between	them.

[The	Border/NoBorder	was	introduced	in	Glk	0.7.1.	Prior	to	that,	all	games	used	the	Border	hint,	and	this	remains	the
default.	However,	as	noted,	not	all	implementations	display	window	borders.	Therefore,	for	existing	implementations,
"Border"	may	be	understood	as	"your	normal	style	of	window	display";	"NoBorder"	may	be	understood	as	"suppress	any
interwindow	borders	you	may	have".]

There	may	be	decorations	within	the	windows	as	well.	A	text	buffer	window	will	often	have	a	scroll	bar.	The	library	(or
player)	may	prefer	wide	margins	around	each	text	window.	And	so	on.

The	library	is	reponsible	for	handling	these	decorations,	margins,	spaces,	and	borders.	You	should	never	worry	about
them.	You	are	guaranteed	that	if	you	request	a	fixed	size	of	two	rows,	your	text	grid	window	will	have	room	for	two	rows
of	characters	–	if	there	is	enough	total	space.	Any	margins	or	borders	will	be	allowed	for	already.	If	there	isn't	enough
total	space	(as	in	stages	4	and	5,	above),	you	lose,	of	course.

How	do	you	know	when	you're	losing?	You	can	call	glk_window_get_size()	to	determine	the	window	size	you	really	got.
Obviously,	you	should	draw	into	your	windows	based	on	their	real	size,	not	the	size	you	requested.	If	there's	enough
space,	the	requested	size	and	the	real	size	will	be	identical;	but	you	should	not	rely	on	this.	Call	glk_window_get_size()
and	check.

3.5.	The	Types	of	Windows

This	is	a	technical	description	of	all	the	window	types,	and	exactly	how	they	behave.

3.5.1.	Blank	Windows

A	blank	window	is	always	blank.	It	supports	no	input	and	no	output.	(You	can	call	glk_window_get_stream()	on	it,	as	you
can	with	any	window,	but	printing	to	the	resulting	stream	has	no	effect.)	A	blank	window	has	no	size;

glk_window_get_size()	will	return	(0,0),	and	it	is	illegal	to	set	a	window	split	with	a	fixed	size	in	the	measurement	system
of	a	blank	window.

[A	blank	window	is	not	the	same	as	there	being	no	windows.	When	Glk	starts	up,	there	are	no	windows	at	all,	not	even	a
window	of	the	blank	type.]

3.5.2.	Pair	Windows

A	pair	window	is	completely	filled	by	the	two	windows	it	contains.	It	supports	no	input	and	no	output,	and	it	has	no	size.

You	cannot	directly	create	a	pair	window;	one	is	automatically	created	every	time	you	split	a	window	with
glk_window_open().	Pair	windows	are	always	created	with	a	rock	value	of	0.

You	can	close	a	pair	window	with	glk_window_close();	this	also	closes	every	window	contained	within	the	pair	window.

It	is	legal	to	split	a	pair	window	when	you	call	glk_window_open().

3.5.3.	Text	Buffer	Windows

A	text	buffer	window	contains	a	linear	stream	of	text.	It	supports	output;	when	you	print	to	it,	the	new	text	is	added	to
the	end.	There	is	no	way	for	you	to	affect	text	which	has	already	been	printed.	There	are	no	guarantees	about	how	much
text	the	window	keeps;	old	text	may	be	stored	forever,	so	that	the	user	can	scroll	back	to	it,	or	it	may	be	thrown	away	as
soon	as	it	scrolls	out	of	the	window.	[Therefore,	there	may	or	may	not	be	a	player-controllable	scroll	bar	or	other
scrolling	widget.]

The	display	of	the	text	in	a	text	buffer	is	up	to	the	library.	Lines	will	probably	not	be	broken	in	the	middles	of	words	–	but
if	they	are,	the	library	is	not	doing	anything	illegal,	only	ugly.	Text	selection	and	copying	to	a	clipboard,	if	available,	are
handled	however	is	best	on	the	player's	machine.	Paragraphs	(as	defined	by	newline	characters	in	the	output)	may	be
indented.	[You	should	not,	in	general,	fake	this	by	printing	spaces	before	each	paragraph	of	prose	text.	Let	the	library
and	player	preferences	handle	that.	Special	cases	(like	indented	lists)	are	of	course	up	to	you.]

When	a	text	buffer	is	cleared	(with	glk_window_clear()),	the	library	will	do	something	appropriate;	the	details	may	vary.
It	may	clear	the	window,	with	later	text	appearing	at	the	top	–	or	the	bottom.	It	may	simply	print	enough	blank	lines	to
scroll	the	current	text	out	of	the	window.	It	may	display	a	distinctive	page-break	symbol	or	divider.

The	size	of	a	text	buffer	window	is	necessarily	imprecise.	Calling	glk_window_get_size()	will	return	the	number	of	rows
and	columns	that	would	be	available	if	the	window	was	filled	with	"0"	(zero)	characters	in	the	"normal"	font.	However,
the	window	may	use	a	non-fixed-width	font,	so	that	number	of	characters	in	a	line	could	vary.	The	window	might	even
support	variable-height	text	(say,	if	the	player	is	using	large	text	for	emphasis);	that	would	make	the	number	of	lines	in
the	window	vary	as	well.

Similarly,	when	you	set	a	fixed-size	split	in	the	measurement	system	of	a	text	buffer,	you	are	setting	a	window	which	can
handle	a	fixed	number	of	rows	(or	columns)	of	"0"	characters.	The	number	of	rows	(or	characters)	that	will	actually	be
displayed	depends	on	font	variances.

A	text	buffer	window	supports	both	character	and	line	input,	but	not	mouse	input.

In	character	input,	there	will	be	some	visible	signal	that	the	window	is	waiting	for	a	keystroke.	(Typically,	a	cursor	at	the
end	of	the	text.)	When	the	player	hits	a	key	in	that	window,	an	event	is	generated,	but	the	key	is	not	printed	in	the
window.

In	line	input,	again,	there	will	be	some	visible	signal.	It	is	most	common	for	the	player	to	compose	input	in	the	window
itself,	at	the	end	of	the	text.	(This	is	how	IF	story	input	usually	looks.)	But	it's	not	strictly	required.	An	alternative
approach	is	the	way	MUD	clients	usually	work:	there	is	a	dedicated	one-line	input	window,	outside	of	Glk's	window
space,	and	the	user	composes	input	there.	[If	this	approach	is	used,	there	will	still	be	some	way	to	handle	input	from	two
windows	at	once.	It	is	the	library's	responsibility	to	make	this	available	to	the	player.	You	only	need	request	line	input
and	wait	for	the	result.]

By	default,	when	the	player	finishes	his	line	of	input,	the	library	will	display	the	input	text	at	the	end	of	the	buffer	text	(if
it	wasn't	there	already.)	It	will	be	followed	by	a	newline,	so	that	the	next	text	you	print	will	start	a	new	line	(paragraph)
after	the	input.

If	you	call	glk_cancel_line_event(),	the	same	thing	happens;	whatever	text	the	user	was	composing	is	visible	at	the	end
of	the	buffer	text,	followed	by	a	newline.

However,	this	default	behavior	can	be	changed	with	the	glk_set_echo_line_event()	call.	If	the	default	echoing	is
disabled,	the	library	will	not	display	the	input	text	(plus	newline)	after	input	is	either	completed	or	cancelled.	The	buffer
will	end	with	whatever	prompt	you	displayed	before	requesting	input.	If	you	want	the	traditional	input	behavior,	it	is
then	your	responsibility	to	print	the	text,	using	the	Input	text	style,	followed	by	a	newline	(in	the	original	style).

3.5.4.	Text	Grid	Windows

A	text	grid	contains	a	rectangular	array	of	characters,	in	a	fixed-width	font.	Its	size	is	the	number	of	columns	and	rows	of
the	array.

A	text	grid	window	supports	output.	It	maintains	knowledge	of	an	output	cursor	position.	When	the	window	is	opened,
it	is	filled	with	blanks	(space	characters),	and	the	output	cursor	starts	in	the	top	left	corner	–	character	(0,0).	If	the
window	is	cleared	with	glk_window_clear(),	the	window	is	filled	with	blanks	again,	and	the	cursor	returns	to	the	top	left
corner.

When	you	print,	the	characters	of	the	output	are	laid	into	the	array	in	order,	left	to	right	and	top	to	bottom.	When	the
cursor	reaches	the	end	of	a	line,	or	if	a	newline	(0x0A)	is	printed,	the	cursor	goes	to	the	beginning	of	the	next	line.	The
library	makes	no	attempt	to	wrap	lines	at	word	breaks.	If	the	cursor	reaches	the	end	of	the	last	line,	further	printing	has
no	effect	on	the	window	until	the	cursor	is	moved.

[Note	that	printing	fancy	characters	may	cause	the	cursor	to	advance	more	than	one	position	per	character.	(For
example,	the	"ae"	ligature	(æ)	may	print	as	two	characters.)	See	section	2.2,	"Output",	for	how	to	test	this	situation.]

You	can	set	the	cursor	position	with	glk_window_move_cursor().

void	glk_window_move_cursor(winid_t	win,	glui32	xpos,	glui32	ypos);

If	you	move	the	cursor	right	past	the	end	of	a	line,	it	wraps;	the	next	character	which	is	printed	will	appear	at	the
beginning	of	the	next	line.

If	you	move	the	cursor	below	the	last	line,	or	when	the	cursor	reaches	the	end	of	the	last	line,	it	goes	"off	the	screen"
and	further	output	has	no	effect.	You	must	call	glk_window_move_cursor()	or	glk_window_clear()	to	move	the	cursor
back	into	the	visible	region.

[Note	that	the	arguments	of	glk_window_move_cursor	are	unsigned	ints.	This	is	okay,	since	there	are	no	negative
positions.	If	you	try	to	pass	a	negative	value,	Glk	will	interpret	it	as	a	huge	positive	value,	and	it	will	wrap	or	go	off	the
last	line.]

[Also	note	that	the	output	cursor	is	not	necessarily	visible.	In	particular,	when	you	are	requesting	line	or	character	input
in	a	grid	window,	you	cannot	rely	on	the	cursor	position	to	prompt	the	player	where	input	is	indicated.	You	should	print
some	character	prompt	at	that	spot	–	a	">"	character,	for	example.]

When	a	text	grid	window	is	resized	smaller,	the	bottom	or	right	area	is	thrown	away,	but	the	remaining	area	stays
unchanged.	When	it	is	resized	larger,	the	new	bottom	or	right	area	is	filled	with	blanks.	[You	may	wish	to	watch	for
evtype_Arrange	events,	and	clear-and-redraw	your	text	grid	windows	when	you	see	them	change	size.]

Text	grid	window	support	character	and	line	input,	as	well	as	mouse	input	(if	a	mouse	is	available.)

Mouse	input	returns	the	position	of	the	character	that	was	touched,	from	(0,0)	to	(width-1,height-1).

Character	input	is	as	described	in	the	previous	section.

Line	input	is	slightly	different;	it	is	guaranteed	to	take	place	in	the	window,	at	the	output	cursor	position.	The	player	can
compose	input	only	to	the	right	edge	of	the	window;	therefore,	the	maximum	input	length	is	(windowwidth	-	1	-
cursorposition).	If	the	maxlen	argument	of	glk_request_line_event()	is	smaller	than	this,	the	library	will	not	allow	the
input	cursor	to	go	more	than	maxlen	characters	past	its	start	point.	[This	allows	you	to	enter	text	in	a	fixed-width	field,
without	the	player	being	able	to	overwrite	other	parts	of	the	window.]

When	the	player	finishes	his	line	of	input,	it	will	remain	visible	in	the	window,	and	the	output	cursor	will	be	positioned
at	the	beginning	of	the	next	row.	Again,	if	you	glk_cancel_line_event(),	the	same	thing	happens.	The
glk_set_echo_line_event()	call	has	no	effect	in	grid	windows.

3.5.5.	Graphics	Windows

A	graphics	window	contains	a	rectangular	array	of	pixels.	Its	size	is	the	number	of	columns	and	rows	of	the	array.

Each	graphics	window	has	a	background	color,	which	is	initially	white.	You	can	change	this;	see	 section	7.2,	"Graphics	in
Graphics	Windows".

When	a	graphics	window	is	resized	smaller,	the	bottom	or	right	area	is	thrown	away,	but	the	remaining	area	stays
unchanged.	When	it	is	resized	larger,	the	new	bottom	or	right	area	is	filled	with	the	background	color.	[You	may	wish	to
watch	for	evtype_Arrange	events,	and	clear-and-redraw	your	graphics	windows	when	you	see	them	change	size.]

In	some	libraries,	you	can	receive	a	graphics-redraw	event	(evtype_Redraw)	at	any	time.	This	signifies	that	the	window
in	question	has	been	cleared	to	its	background	color,	and	must	be	redrawn.	If	you	create	any	graphics	windows,	you
must	handle	these	events.

[Redraw	events	can	be	triggered	when	a	Glk	window	is	uncovered	or	made	visible	by	the	platform's	window	manager.
On	the	other	hand,	some	Glk	libraries	handle	these	problem	automatically	–	for	example,	with	a	backing	store	–	and	do
not	send	you	redraw	events.	On	the	third	hand,	the	backing	store	may	be	discarded	if	memory	is	low,	or	for	other
reasons	–	perhaps	the	screen's	color	depth	has	changed.	So	redraw	events	are	always	a	possibility,	even	in	clever
libraries.	This	is	why	you	must	be	prepared	to	handle	them.]

[However,	you	will	not	receive	a	redraw	event	when	you	create	a	graphics	window.	It	is	assumed	that	you	will	do	the
initial	drawing	of	your	own	accord.	You	also	do	not	get	redraw	events	when	a	graphics	window	is	enlarged.	If	you
ordered	the	enlargement,	you	already	know	about	it;	if	the	player	is	responsible,	you	receive	a	window-arrangement
event,	which	covers	the	situation.]

For	a	description	of	the	drawing	functions	that	apply	to	graphics	windows,	see	 section	7.2,	"Graphics	in	Graphics
Windows".

Graphics	windows	do	not	support	text	output,	nor	line	input.	They	may	support	character	input.	 [Character	input	for
graphics	windows	was	added	in	Glk	spec	0.7.5.	Older	interpreters	may	not	support	this	feature.]

Not	all	libraries	support	graphics	windows.	You	can	test	whether	Glk	graphics	are	available	using	the	gestalt	system.	In	a
C	program,	you	can	also	test	whether	the	graphics	functions	are	defined	at	compile-time.	See	section	7.4,	"Testing	for
Graphics	Capabilities".	[As	with	all	windows,	you	should	also	test	for	NULL	when	you	create	a	graphics	window.]

3.6.	Echo	Streams

Every	window	has	an	associated	window	stream;	you	print	to	the	window	by	printing	to	this	stream.	However,	it	is
possible	to	attach	a	second	stream	to	a	window.	Any	text	printed	to	the	window	is	also	echoed	to	this	second	stream,
which	is	called	the	window's	"echo	stream."

Effectively,	any	call	to	glk_put_char()	(or	the	other	output	commands)	which	is	directed	to	the	window's	window	stream,
is	replicated	to	the	window's	echo	stream.	This	also	goes	for	the	style	commands	such	as	glk_set_style().

Note	that	the	echoing	is	one-way.	You	can	still	print	text	directly	to	the	echo	stream,	and	it	will	go	wherever	the	stream	is
bound,	but	it	does	not	back	up	and	appear	in	the	window.

void	glk_window_set_echo_stream(winid_t	win,	strid_t	str);
strid_t	glk_window_get_echo_stream(winid_t	win);

Initially,	a	window	has	no	echo	stream,	so	glk_window_get_echo_stream(win)	will	return	NULL.	You	can	set	a	window's
echo	stream	to	be	any	valid	output	stream	by	calling	glk_window_set_echo_stream(win,	str).	You	can	reset	a	window	to
stop	echoing	by	calling	glk_window_set_echo_stream(win,	NULL).

An	echo	stream	can	be	of	any	type,	even	another	window's	window	stream.	 [This	would	be	somewhat	silly,	since	it
would	mean	that	any	text	printed	to	the	window	would	be	duplicated	in	another	window.	More	commonly,	you	would
set	a	window's	echo	stream	to	be	a	file	stream,	in	order	to	create	a	transcript	file	from	that	window.]

A	window	can	only	have	one	echo	stream.	But	a	single	stream	can	be	the	echo	stream	of	any	number	of	windows,
sequentially	or	simultaneously.

If	a	window	is	closed,	its	echo	stream	remains	open;	it	is	 not	automatically	closed.	[Do	not	confuse	the	window's	window
stream	with	its	echo	stream.	The	window	stream	is	"owned"	by	the	window,	and	dies	with	it.	The	echo	stream	is	merely
temporarily	associated	with	the	window.]

If	a	stream	is	closed,	and	it	is	the	echo	stream	of	one	or	more	windows,	those	windows	are	reset	to	not	echo	anymore.
(So	then	calling	glk_window_get_echo_stream()	on	them	will	return	NULL.)

It	is	illegal	to	set	a	window's	echo	stream	to	be	its	 own	window	stream.	That	would	create	an	infinite	loop,	and	is	nearly
certain	to	crash	the	Glk	library.	It	is	similarly	illegal	to	create	a	longer	loop	(two	or	more	windows	echoing	to	each
other.)

3.7.	Other	Window	Functions

winid_t	glk_window_iterate(winid_t	win,	glui32	*rockptr);

This	function	can	be	used	to	iterate	through	the	list	of	all	open	windows	(including	pair	windows.)	See	 section	1.6.2,
"Iterating	Through	Opaque	Objects".

As	that	section	describes,	the	order	in	which	windows	are	returned	is	arbitrary.	The	root	window	is	not	necessarily	first,
nor	is	it	necessarily	last.

glui32	glk_window_get_rock(winid_t	win);

This	returns	the	window's	rock	value.	Pair	windows	always	have	rock	0;	all	other	windows	return	whatever	rock	you
created	them	with.

glui32	glk_window_get_type(winid_t	win);

This	returns	the	window's	type	(wintype_...)

winid_t	glk_window_get_parent(winid_t	win);

This	returns	the	window	which	is	the	parent	of	the	given	window.	If	win	is	the	root	window,	this	returns	NULL,	since	the
root	window	has	no	parent.	Remember	that	the	parent	of	every	window	is	a	pair	window;	other	window	types	are	always
childless.

winid_t	glk_window_get_sibling(winid_t	win);

This	returns	the	other	child	of	the	given	window's	parent.	If	win	is	the	root	window,	this	returns	NULL.

winid_t	glk_window_get_root(void);

This	returns	the	root	window.	If	there	are	no	windows,	this	returns	NULL.

void	glk_window_clear(winid_t	win);

Erase	the	window.	The	meaning	of	this	depends	on	the	window	type.

·		Text	buffer:	This	may	do	any	number	of	things,	such	as	delete	all	text	in	the	window,	or	print	enough	blank	lines	to
scroll	all	text	beyond	visibility,	or	insert	a	page-break	marker	which	is	treated	specially	by	the	display	part	of	the
library.

·		Text	grid:	This	will	clear	the	window,	filling	all	positions	with	blanks	(in	the	normal	style).	The	window	cursor	is
moved	to	the	top	left	corner	(position	0,0).

·		Graphics:	Clears	the	entire	window	to	its	current	background	color.	See	 section	3.5.5,	"Graphics	Windows".
·		Other	window	types:	No	effect.

It	is	illegal	to	erase	a	window	which	has	line	input	pending.

strid_t	glk_window_get_stream(winid_t	win);

This	returns	the	stream	which	is	associated	with	the	window.	(See	 section	5.6.1,	"Window	Streams".)	Every	window	has	a
stream	which	can	be	printed	to,	but	this	may	not	be	useful,	depending	on	the	window	type.	[For	example,	printing	to	a
blank	window's	stream	has	no	effect.]

void	glk_set_window(winid_t	win);

This	sets	the	current	stream	to	the	window's	stream.	If	win	is	NULL,	it	is	equivalent	to

glk_stream_set_current(NULL);

If	win	is	not	NULL,	it	is	equivalent	to

glk_stream_set_current(glk_window_get_stream(win));

See	section	5,	"Streams".

4.	Events

As	described	above,	all	player	input	is	handed	to	your	program	by	the	glk_select()	call,	in	the	form	of	events.	You	should
write	at	least	one	event	loop	to	retrieve	these	events.

void	glk_select(event_t	*event);

typedef	struct	event_struct	{
				glui32	type;
				winid_t	win;
				glui32	val1,	val2;
}	event_t;

This	causes	the	program	to	wait	for	an	event,	and	then	store	it	in	the	structure	pointed	to	by	the	argument.	Unlike	most
Glk	functions	that	take	pointers,	the	argument	of	glk_select()	may	not	be	NULL.

Most	of	the	time,	you	only	get	the	events	that	you	request.	However,	there	are	some	events	which	can	arrive	at	any	time.
This	is	why	you	must	always	call	glk_select()	in	a	loop,	and	continue	the	loop	until	you	get	the	event	you	really	want.

The	event	structure	is	self-explanatory.	type	is	the	event	type.	The	window	that	spawned	the	event,	if	relevant,	is	in	win.
The	remaining	fields	contain	more	information	specific	to	the	event.

The	event	types	are:

·		evtype_None:	No	event.	This	is	a	placeholder,	and	glk_select()	never	returns	it.
·		evtype_Timer:	An	event	that	repeats	at	fixed	intervals.
·		evtype_CharInput:	A	keystroke	event	in	a	window.
·		evtype_LineInput:	A	full	line	of	input	completed	in	a	window.
·		evtype_MouseInput:	A	mouse	click	in	a	window.
·		evtype_Arrange:	An	event	signalling	that	the	sizes	of	some	windows	have	changed.
·		evtype_Redraw:	An	event	signalling	that	graphics	windows	must	be	redrawn.
·		evtype_SoundNotify:	The	completion	of	a	sound	being	played	in	a	sound	channel.
·		evtype_Hyperlink:	The	selection	of	a	hyperlink	in	a	window.
·		evtype_VolumeNotify:	The	completion	of	a	gradual	volume	change	in	a	sound	channel.

Note	that	evtype_None	is	zero,	and	the	other	values	are	positive.	Negative	event	types	(0x80000000	to	0xFFFFFFFF)	are
reserved	for	implementation-defined	events.

You	can	also	inquire	if	an	event	is	available,	without	stopping	to	wait	for	one	to	occur.

void	glk_select_poll(event_t	*event);

This	checks	if	an	internally-spawned	event	is	available.	If	so,	it	stores	it	in	the	structure	pointed	to	by	event.	If	not,	it	sets
event->type	to	evtype_None.	Either	way,	it	returns	almost	immediately.

The	first	question	you	now	ask	is,	what	is	an	internally-spawned	event?	glk_select_poll()	does	 not	check	for	or	return
evtype_CharInput,	evtype_LineInput,	or	evtype_MouseInput	events.	It	is	intended	for	you	to	test	conditions	which	may
have	occurred	while	you	are	computing,	and	not	interfacing	with	the	player.	For	example,	time	may	pass	during	slow
computations;	you	can	use	glk_select_poll()	to	see	if	a	evtype_Timer	event	has	occured.	(See	section	4.4,	"Timer	Events".)

At	the	moment,	glk_select_poll()	checks	for	evtype_Timer,	and	possibly	evtype_Arrange	and	evtype_SoundNotify
events.	But	see	section	4.9,	"Other	Events".

The	second	question	is,	what	does	it	mean	that	glk_select_poll()	returns	"almost	immediately"?	In	some	Glk	libraries,
text	that	you	send	to	a	window	is	buffered;	it	does	not	actually	appear	until	you	request	player	input	with	glk_select().

glk_select_poll()	attends	to	this	buffer-flushing	task	in	the	same	way.	(Although	it	does	not	do	the	"Hit	any	key	to	scroll
down"	waiting	which	may	be	done	in	glk_select();	that's	a	player-input	task.)

Similarly,	on	multitasking	platforms,	glk_select()	may	yield	time	to	other	processes;	and	glk_select_poll()	does	this	as
well.

The	upshot	of	this	is	that	you	should	not	call	glk_select_poll()	very	often.	If	you	are	not	doing	much	work	between	player
inputs,	you	should	not	need	to	call	it	at	all.	[For	example,	in	a	virtual	machine	interpreter,	you	should	not	call
glk_select_poll()	after	every	opcode.]	However,	if	you	are	doing	intense	computation,	you	may	wish	to	call
glk_select_poll()	every	so	often	to	yield	time	to	other	processes.	And	if	you	are	printing	intermediate	results	during	this
computation,	you	should	glk_select_poll()	every	so	often,	so	that	you	can	be	certain	your	output	will	be	displayed	before
the	next	glk_select().

[However,	you	should	call	glk_tick()	often	–	once	per	opcode	in	a	VM	interpreter.	See	 section	1.4,	"The	Tick	Thing".]

4.1.	Character	Input	Events

You	can	request	character	input	from	text	buffer,	text	grid,	and	graphics	windows.	There	are	separate	functions	for
requesting	the	availability	of	particular	Latin-1	and	Unicode	characters;	see	section	2.1,	"Testing	for	Unicode
Capabilities".	To	test	whether	graphics	windows	support	character	input,	use	the	gestalt_GraphicsCharInput	selector.

void	glk_request_char_event(winid_t	win);

Request	input	of	a	Latin-1	character	or	special	key.	A	window	cannot	have	requests	for	both	character	and	line	input	at
the	same	time.	Nor	can	it	have	requests	for	character	input	of	both	types	(Latin-1	and	Unicode).	It	is	illegal	to	call
glk_request_char_event()	if	the	window	already	has	a	pending	request	for	either	character	or	line	input.

void	glk_request_char_event_uni(winid_t	win);

Request	input	of	a	Unicode	character	or	special	key.

void	glk_cancel_char_event(winid_t	win);

This	cancels	a	pending	request	for	character	input.	(Either	Latin-1	or	Unicode.)	For	convenience,	it	is	legal	to	call
glk_cancel_char_event()	even	if	there	is	no	character	input	request	on	that	window.	Glk	will	ignore	the	call	in	this	case.

If	a	window	has	a	pending	request	for	character	input,	and	the	player	hits	a	key	in	that	window,	glk_select()	will	return
an	event	whose	type	is	evtype_CharInput.	Once	this	happens,	the	request	is	complete;	it	is	no	longer	pending.	You	must
call	glk_request_char_event()	or	glk_request_char_event_uni()	if	you	want	another	character	from	that	window.

In	the	event	structure,	win	tells	what	window	the	event	came	from.	val1	tells	what	character	was	entered;	this	will	be	a
character	code,	or	a	special	keycode.	(See	section	2.4,	"Character	Input".)	If	you	called	glk_request_char_event(),	val1
will	be	in	0..255,	or	else	a	special	keycode.	In	any	case,	val2	will	be	0.

4.2.	Line	Input	Events

You	can	request	line	input	from	text	buffer	and	text	grid	windows.	There	are	separate	functions	for	requesting	the
availability	of	particular	Latin-1	and	Unicode	characters;	see	section	2.1,	"Testing	for	Unicode	Capabilities".

void	glk_request_line_event(winid_t	win,	char	*buf,	glui32	maxlen,	glui32	initlen);

Request	input	of	a	line	of	Latin-1	characters.	A	window	cannot	have	requests	for	both	character	and	line	input	at	the
same	time.	Nor	can	it	have	requests	for	line	input	of	both	types	(Latin-1	and	Unicode).	It	is	illegal	to	call
glk_request_line_event()	if	the	window	already	has	a	pending	request	for	either	character	or	line	input.

The	buf	argument	is	a	pointer	to	space	where	the	line	input	will	be	stored.	(This	may	not	be	NULL.)	maxlen	is	the	length
of	this	space,	in	bytes;	the	library	will	not	accept	more	characters	than	this.	If	initlen	is	nonzero,	then	the	first	initlen
bytes	of	buf	will	be	entered	as	pre-existing	input	–	just	as	if	the	player	had	typed	them	himself.	[The	player	can	continue
composing	after	this	pre-entered	input,	or	delete	it	or	edit	as	usual.]

The	contents	of	the	buffer	are	undefined	until	the	input	is	completed	(either	by	a	line	input	event,	or
glk_cancel_line_event().	The	library	may	or	may	not	fill	in	the	buffer	as	the	player	composes,	while	the	input	is	still
pending;	it	is	illegal	to	change	the	contents	of	the	buffer	yourself.

void	glk_request_line_event_uni(winid_t	win,	glui32	*buf,	glui32	maxlen,	glui32	initlen);

Request	input	of	a	line	of	Unicode	characters.	This	works	the	same	as	glk_request_line_event(),	except	the	result	is
stored	in	an	array	of	glui32	values	instead	of	an	array	of	characters,	and	the	values	may	be	any	valid	Unicode	code
points.

If	possible,	the	library	should	return	fully	composed	Unicode	characters,	rather	than	strings	of	base	and	composition
characters.

[Fully-composed	characters	are	the	norm	for	Unicode	text,	so	an	implementation	that	ignores	this	issue	will	probably
produce	the	right	result.	However,	the	game	may	not	want	to	rely	on	that.	Another	factor	is	that	case-folding	can
(occasionally)	produce	non-normalized	text.	Therefore,	to	cover	all	its	bases,	a	game	should	call
glk_buffer_to_lower_case_uni(),	followed	by	glk_buffer_canon_normalize_uni(),	before	parsing.]

[Earlier	versions	of	this	spec	said	that	line	input	must	always	be	in	Unicode	Normalization	Form	C.	However,	this	has
not	been	universally	implemented.	It	is	also	somewhat	redundant,	for	the	results	noted	above.	Therefore,	we	now
merely	recommend	that	line	input	be	fully	composed.	The	game	is	ultimately	responsible	for	all	case-folding	and
normalization.	See	section	2.6,	"Unicode	String	Normalization".]

void	glk_cancel_line_event(winid_t	win,	event_t	*event);

This	cancels	a	pending	request	for	line	input.	(Either	Latin-1	or	Unicode.)	The	event	pointed	to	by	the	event	argument
will	be	filled	in	as	if	the	player	had	hit	enter,	and	the	input	composed	so	far	will	be	stored	in	the	buffer;	see	below.	If	you
do	not	care	about	this	information,	pass	NULL	as	the	event	argument.	(The	buffer	will	still	be	filled.)

For	convenience,	it	is	legal	to	call	glk_cancel_line_event()	even	if	there	is	no	line	input	request	on	that	window.	The
event	type	will	be	set	to	evtype_None	in	this	case.

void	glk_set_echo_line_event(winid_t	win,	glui32	val);

Normally,	after	line	input	is	completed	or	cancelled	in	a	buffer	window,	the	library	ensures	that	the	complete	input	line
(or	its	latest	state,	after	cancelling)	is	displayed	at	the	end	of	the	buffer,	followed	by	a	newline.	This	call	allows	you	to
suppress	this	behavior.	If	the	val	argument	is	zero,	all	subsequent	line	input	requests	in	the	given	window	will	leave	the
buffer	unchanged	after	the	input	is	completed	or	cancelled;	the	player's	input	will	not	be	printed.	If	val	is	nonzero,
subsequent	input	requests	will	have	the	normal	printing	behavior.

[Note	that	this	feature	is	unrelated	to	the	window's	echo	stream.]

res	=	glk_gestalt(gestalt_LineInputEcho,	0);

Not	all	libraries	support	this	feature.	This	returns	1	if	glk_set_echo_line_event()	is	supported,	and	0	if	it	is	not.
[Remember	that	if	it	is	not	supported,	the	behavior	is	always	the	default,	which	is	line	echoing	 enabled.]

If	you	turn	off	line	input	echoing,	you	can	reproduce	the	standard	input	behavior	by	following	each	line	input	event	(or
line	input	cancellation)	by	printing	the	input	line,	in	the	Input	style,	followed	by	a	newline	in	the	original	style.

The	glk_set_echo_line_event()	does	not	affect	a	pending	line	input	request.	It	also	has	no	effect	in	non-buffer	windows.
[In	a	grid	window,	the	game	can	overwrite	the	input	area	at	will,	so	there	is	no	need	for	this	distinction.]

void	glk_set_terminators_line_event(winid_t	win,	glui32	*keycodes,	glui32	count);

If	a	window	has	a	pending	request	for	line	input,	the	player	can	generally	hit	the	enter	key	(in	that	window)	to	complete
line	input.	The	details	will	depend	on	the	platform's	native	user	interface.

It	is	possible	to	request	that	other	keystrokes	complete	line	input	as	well.	(This	allows	a	game	to	intercept	function	keys
or	other	special	keys	during	line	input.)	To	do	this,	call	glk_set_terminators_line_event(),	and	pass	an	array	of	count
keycodes.	These	must	all	be	special	keycodes	(see	section	2.4,	"Character	Input").	Do	not	include	regular	printable
characters	in	the	array,	nor	keycode_Return	(which	represents	the	default	enter	key	and	will	always	be	recognized).	To
return	to	the	default	behavior,	pass	a	NULL	or	empty	array.

The	glk_set_terminators_line_event()	affects	subsequent	line	input	requests	in	the	given	window.	It	does	not	affect	a
pending	line	input	request.	[This	distinction	makes	life	easier	for	interpreters	that	set	up	UI	callbacks	only	at	the	start	of
input.]

A	library	may	not	support	this	feature;	if	it	does,	it	may	not	support	all	special	keys	as	terminators.	(Some	keystrokes	are
reserved	for	OS	or	interpreter	control.)

res	=	glk_gestalt(gestalt_LineTerminators,	0);

This	returns	1	if	glk_set_terminators_line_event()	is	supported,	and	0	if	it	is	not.

res	=	glk_gestalt(gestalt_LineTerminatorKey,	ch);

This	returns	1	if	the	keycode	ch	can	be	passed	to	glk_set_terminators_line_event().	If	it	returns	0,	that	keycode	will	be
ignored	as	a	line	terminator.	Printable	characters	and	keycode_Return	will	always	return	0.

When	line	input	is	completed,	glk_select()	will	return	an	event	whose	type	is	evtype_LineInput.	Once	this	happens,	the
request	is	complete;	it	is	no	longer	pending.	You	must	call	glk_request_line_event()	if	you	want	another	line	of	text	from
that	window.

In	the	event	structure,	win	tells	what	window	the	event	came	from.	val1	tells	how	many	characters	were	entered.	val2
will	be	0	unless	input	was	ended	by	a	special	terminator	key,	in	which	case	val2	will	be	the	keycode	(one	of	the	values
passed	to	glk_set_terminators_line_event()).

The	characters	themselves	are	stored	in	the	buffer	specified	in	the	original	glk_request_line_event()	or
glk_request_line_event_uni()	call.	[There	is	no	null	terminator	or	newline	stored	in	the	buffer.]

It	is	illegal	to	print	anything	to	a	window	which	has	line	input	pending.	 [This	is	because	the	window	may	be	displaying
and	editing	the	player's	input,	and	printing	anything	would	make	life	unnecessarily	complicated	for	the	library.]

4.3.	Mouse	Input	Events

On	some	platforms,	Glk	can	recognize	when	the	mouse	(or	other	pointer)	is	used	to	select	a	spot	in	a	window.	You	can
request	mouse	input	only	in	text	grid	windows	and	graphics	windows.

void	glk_request_mouse_event(winid_t	win);
void	glk_cancel_mouse_event(winid_t	win);

A	window	can	have	mouse	input	and	character/line	input	pending	at	the	same	time.

If	the	player	clicks	in	a	window	which	has	a	mouse	input	event	pending,	glk_select()	will	return	an	event	whose	type	is
evtype_MouseInput.	Again,	once	this	happens,	the	request	is	complete,	and	you	must	request	another	if	you	want
further	mouse	input.

In	the	event	structure,	win	tells	what	window	the	event	came	from.

In	a	text	grid	window,	the	val1	and	val2	fields	are	the	x	and	y	coordinates	of	the	character	that	was	clicked	on.	 [So	val1	is
the	column,	and	val2	is	the	row.]	The	top	leftmost	character	is	considered	to	be	(0,0).

In	a	graphics	window,	they	are	the	x	and	y	coordinates	of	the	pixel	that	was	clicked	on.	Again,	the	top	left	corner	of	the
window	is	(0,0).

You	can	test	whether	mouse	input	is	supported	with	the	gestalt_MouseInput	selector.

res	=	glk_gestalt(gestalt_MouseInput,	windowtype);

This	will	return	TRUE	(1)	if	windows	of	the	given	type	support	mouse	input.	If	this	returns	FALSE	(0),	it	is	still	legal	to
call	glk_request_mouse_event(),	but	it	will	have	no	effect,	and	you	will	never	get	mouse	events.

[Most	mouse-based	idioms	define	standard	functions	for	mouse	hits	in	text	windows	–	typically	selecting	or	copying	text.
It	is	up	to	the	library	to	separate	this	from	Glk	mouse	input.	The	library	may	choose	to	select	text	when	it	is	clicked
normally,	and	cause	Glk	mouse	events	when	text	is	control-clicked.	Or	the	other	way	around.	Or	it	may	be	the	difference
between	clicking	and	double-clicking.	Or	the	library	may	reserve	a	particular	mouse	button,	on	a	multi-button	mouse.	It
may	even	specify	a	keyboard	key	to	be	the	"mouse	button",	referring	to	wherever	the	mouse	cursor	is	when	the	key	is
hit.	Or	some	even	more	esoteric	positioning	system.	You	need	only	know	that	the	user	can	do	it,	or	not.]

[However,	since	different	platforms	will	handle	this	issue	differently,	you	should	be	careful	how	you	instruct	the	player
in	your	program.	Do	not	tell	the	player	to	"double-click",	"right-click",	or	"control-click"	in	a	window.	The	preferred	term

is	"to	touch	the	window",	or	a	spot	in	the	window.]	[Goofy,	but	preferred.]

4.4.	Timer	Events

You	can	request	that	an	event	be	sent	at	fixed	intervals,	regardless	of	what	the	player	does.	Unlike	input	events,	timer
events	can	be	tested	for	with	glk_select_poll()	as	well	as	glk_select().

void	glk_request_timer_events(glui32	millisecs);

It	is	possible	that	the	library	does	not	support	timer	events.	You	can	check	this	with	the	gestalt_Timer	selector.

res	=	glk_gestalt(gestalt_Timer,	0);

This	returns	TRUE	(1)	if	timer	events	are	supported,	and	FALSE	(0)	if	they	are	not.

Initially,	there	is	no	timer	and	you	get	no	timer	events.	If	you	call	glk_request_timer_events(N),	with	N	not	0,	you	will	get
timer	events	about	every	N	milliseconds	thereafter.	(Assuming	that	they	are	supported	–	if	not,
glk_request_timer_events()	has	no	effect.)	Unlike	keyboard	and	mouse	events,	timer	events	will	continue	until	you	shut
them	off.	You	do	not	have	to	re-request	them	every	time	you	get	one.	Call	glk_request_timer_events(0)	to	stop	getting
timer	events.

The	rule	is	that	when	you	call	glk_select()	or	glk_select_poll(),	if	it	has	been	more	than	N	milliseconds	since	the	last
timer	event,	and	(for	glk_select())	if	there	is	no	player	input,	you	will	receive	an	event	whose	type	is	evtype_Timer.	(win,
val1,	and	val2	will	all	be	0.)

Timer	events	do	not	stack	up.	If	you	spend	10N	milliseconds	doing	computation,	and	then	call	glk_select(),	you	will	not
get	ten	timer	events	in	a	row.	The	library	will	simply	note	that	it	has	been	more	than	N	milliseconds,	and	return	a	timer
event	right	away.	If	you	call	glk_select()	again	immediately,	it	will	be	N	milliseconds	before	the	next	timer	event.

This	means	that	the	timing	of	timer	events	is	approximate,	and	the	library	will	err	on	the	side	of	being	late.	If	there	is	a
conflict	between	player	input	events	and	timer	events,	the	player	input	takes	precedence.	[This	prevents	the	user	from
being	locked	out	by	overly	enthusiastic	timer	events.	Unfortunately,	it	also	means	that	your	timer	can	be	locked	out	on
slower	machines,	if	the	player	pounds	too	enthusiastically	on	the	keyboard.	Sorry.]

[I	don't	have	to	tell	you	that	a	millisecond	is	one	thousandth	of	a	second,	do	I?]

4.5.	Window	Arrangement	Events

Some	platforms	allow	the	player	to	resize	the	Glk	window	during	play.	This	will	naturally	change	the	sizes	of	your
windows.	If	this	occurs,	then	immediately	after	all	the	rearrangement,	glk_select()	will	return	an	event	whose	type	is
evtype_Arrange.	You	can	use	this	notification	to	redisplay	the	contents	of	a	graphics	or	text	grid	window	whose	size	has
changed.	[The	display	of	a	text	buffer	window	is	entirely	up	to	the	library,	so	you	don't	need	to	worry	about	those.]

In	the	event	structure,	win	will	be	NULL	if	all	windows	are	affected.	If	only	some	windows	are	affected,	win	will	refer	to
a	window	which	contains	all	the	affected	windows.	[You	can	always	play	it	safe,	ignore	win,	and	redraw	every	graphics
and	text	grid	window.]	val1	and	val2	will	be	0.

An	arrangement	event	is	guaranteed	to	occur	whenever	the	player	causes	any	window	to	change	size,	as	measured	by	its
own	metric.	[Size	changes	caused	by	you	–	for	example,	if	you	open,	close,	or	resize	a	window	–	do	not	trigger
arrangement	events.	You	must	be	aware	of	the	effects	of	your	window	management,	and	redraw	the	windows	that	you
affect.]

[It	is	possible	that	several	different	player	actions	can	cause	windows	to	change	size.	For	example,	if	the	player	changes
the	screen	resolution,	an	arrangement	event	might	be	triggered.	This	might	also	happen	if	the	player	changes	his
display	font	to	a	different	size;	the	windows	would	then	be	different	"sizes"	in	the	metric	of	rows	and	columns,	which	is
the	important	metric	and	the	only	one	you	have	access	to.]

Arrangement	events,	like	timer	events,	can	be	returned	by	glk_select_poll().	But	this	will	not	occur	on	all	platforms.	You
must	be	ready	to	receive	an	arrangement	event	when	you	call	glk_select_poll(),	but	it	is	possible	that	it	will	not	arrive
until	the	next	time	you	call	glk_select().	[This	is	because	on	some	platforms,	window	resizing	is	handled	as	part	of	player
input;	on	others,	it	can	be	triggered	by	an	external	process	such	as	a	window	manager.]

4.6.	Window	Redrawing	Events

On	platforms	that	support	graphics,	it	is	possible	that	the	contents	of	a	graphics	window	will	be	lost,	and	have	to	be
redrawn	from	scratch.	If	this	occurs,	then	glk_select()	will	return	an	event	whose	type	is	evtype_Redraw.

In	the	event	structure,	win	will	be	NULL	if	all	windows	are	affected.	If	only	some	windows	are	affected,	win	will	refer	to
a	window	which	contains	all	the	affected	windows.	[You	can	always	play	it	safe,	ignore	win,	and	redraw	every	graphics
window.]	val1	and	val2	will	be	0.

Affected	windows	are	already	cleared	to	their	background	color	when	you	receive	the	redraw	event.

Redraw	events	can	be	returned	by	glk_select_poll().	But,	like	arrangement	events,	this	is	platform-dependent.	See
section	4.5,	"Window	Arrangement	Events".

For	more	about	redraw	events	and	how	they	affect	graphics	windows,	see	 section	3.5.5,	"Graphics	Windows".

4.7.	Sound	Notification	Events

On	platforms	that	support	sound,	you	can	request	to	receive	an	evtype_SoundNotify	event	when	a	sound	finishes
playing.	You	can	also	request	to	receive	an	evtype_VolumeNotify	event	when	a	gradual	volume	change	completes.	See
section	8.3,	"Playing	Sounds".

4.8.	Hyperlink	Events

On	platforms	that	support	hyperlinks,	you	can	request	to	receive	an	evtype_Hyperlink	event	when	the	player	selects	a
link.	See	section	9.2,	"Accepting	Hyperlink	Events".

4.9.	Other	Events

There	are	currently	no	other	event	types	defined	by	Glk.	(The	"evtype_None"	constant	is	a	placeholder,	and	is	never
returned	by	glk_select().)

It	is	possible	that	new	event	types	will	be	defined	in	the	future.	 [For	example,	if	video	or	animation	capabilities	are
added	to	Glk,	there	would	probably	be	some	sort	of	completion	event	for	them.]

[This	is	also	why	you	must	put	calls	to	glk_select()	in	loops.	If	you	tried	to	read	a	character	by	simply	writing	
				glk_request_char_event(win);
				glk_select(&ev);
you	might	not	get	a	CharInput	event	back.	You	could	get	some	not-yet-defined	event	which	happened	to	occur	before	the
player	hit	a	key.	Or,	for	that	matter,	a	window	arrangement	event.]

[It	is	not	generally	necessary	to	put	a	call	to	glk_select_poll()	in	a	loop.	You	usually	call	glk_select_poll()	to	update	the
display	or	test	if	an	event	is	available,	not	to	wait	for	a	particular	event.	However,	if	you	are	using	sound	notification
events,	and	several	sounds	are	playing,	it	might	be	important	to	make	sure	you	knew	about	all	sounds	completed	at	any
particular	time.	You	would	do	this	with	
				glk_select_poll(&ev);
				while	(ev.type	!=	evtype_None)	{
								//	handle	event
								glk_select_poll(&ev);
				}
Once	glk_select_poll()	returns	evtype_None,	you	should	not	call	it	again	immediately.	Do	some	work	first.	If	you	want	to
wait	for	an	event,	use	glk_select(),	not	a	loop	of	glk_select_poll().]

5.	Streams

All	character	output	in	Glk	is	done	through	streams.	Every	window	has	an	output	stream	associated	with	it.	You	can	also
write	to	files	on	disk;	every	open	file	is	represented	by	an	output	stream	as	well.

There	are	also	input	streams;	these	are	used	for	reading	from	files	on	disk.	It	is	possible	for	a	stream	to	be	both	an	input
and	an	output	stream.	[Player	input	is	done	through	line	and	character	input	events,	not	streams.	This	is	a	small
inelegance	in	theory.	In	practice,	player	input	is	slow	and	things	can	interrupt	it,	whereas	file	input	is	immediate.	If	a
network	extension	to	Glk	were	proposed,	it	would	probably	use	events	and	not	streams,	since	network	communication	is
not	immediate.]

It	is	also	possible	to	create	a	stream	that	reads	or	writes	to	a	buffer	in	memory.

Finally,	there	may	be	platform-specific	types	of	streams,	which	are	created	before	your	program	starts	running.	 [For
example,	a	program	running	under	Unix	may	have	access	to	standard	input	as	a	stream,	even	though	there	is	no	Glk	call
to	explicitly	open	standard	input.	On	the	Mac,	data	in	a	Mac	resource	may	be	available	through	a	resource-reading
stream.]	You	do	not	need	to	worry	about	the	origin	of	such	streams;	just	read	or	write	them	as	usual.	For	information
about	how	platform-specific	streams	come	to	be,	see	section	11.1,	"Startup	Options".

A	stream	is	opened	with	a	particular	file	mode:

·		filemode_Write:	An	output	stream.
·		filemode_Read:	An	input	stream.
·		filemode_ReadWrite:	Both	an	input	and	an	output	stream.
·		filemode_WriteAppend:	An	output	stream,	but	the	data	will	added	to	the	end	of	whatever	already	existed	in	the

destination,	instead	of	replacing	it.

[In	the	stdio	library,	using	fopen(),	filemode_Write	would	be	mode	"w";	filemode_Read	would	be	mode	"r";
filemode_ReadWrite	would	be	mode	"r+".	Confusingly,	filemode_WriteAppend	cannot	be	mode	"a",	because	the	stdio
spec	says	that	when	you	open	a	file	with	mode	"a",	then	fseek()	doesn't	work.	So	we	have	to	use	mode	"r+"	for	appending.
Then	we	run	into	the	other	stdio	problem,	which	is	that	"r+"	never	creates	a	new	file.	So	filemode_WriteAppend	has	to
first	open	the	file	with	"a",	close	it,	reopen	with	"r+",	and	then	fseek()	to	the	end	of	the	file.	For	filemode_ReadWrite,	the
process	is	the	same,	except	without	the	fseek()	–	we	begin	at	the	beginning	of	the	file.]

[We	must	also	obey	an	obscure	geas	of	ANSI	C	"r+"	files:	you	can't	switch	from	reading	to	writing	without	doing	an
fseek()	in	between.	Switching	from	writing	to	reading	has	the	same	restriction,	except	that	an	fflush()	also	works.]

For	information	on	opening	streams,	see	the	discussion	of	each	specific	type	of	stream	in	 section	5.6,	"The	Types	of
Streams".	Remember	that	it	is	always	possible	that	opening	a	stream	will	fail,	in	which	case	the	creation	function	will
return	NULL.

Each	stream	remembers	two	character	counts,	the	number	of	characters	printed	to	and	read	from	that	stream.	The
write-count	is	exactly	one	per	glk_put_char()	call;	it	is	figured	before	any	platform-dependent	character	cookery.	[For
example,	if	a	newline	character	is	converted	to	linefeed-plus-carriage-return,	the	stream's	count	still	only	goes	up	by
one;	similarly	if	an	accented	character	is	displayed	as	two	characters.]	The	read-count	is	exactly	one	per
glk_get_char_stream()	call,	as	long	as	the	call	returns	an	actual	character	(as	opposed	to	an	end-of-file	token.)

Glk	has	a	notion	of	the	"current	(output)	stream".	If	you	print	text	without	specifying	a	stream,	it	goes	to	the	current
output	stream.	The	current	output	stream	may	be	NULL,	meaning	that	there	isn't	one.	It	is	illegal	to	print	text	to	stream
NULL,	or	to	print	to	the	current	stream	when	there	isn't	one.

If	the	stream	which	is	the	current	stream	is	closed,	the	current	stream	becomes	NULL.

void	glk_stream_set_current(strid_t	str);

This	sets	the	current	stream	to	str,	which	must	be	an	output	stream.	You	may	set	the	current	stream	to	NULL,	which
means	the	current	stream	is	not	set	to	anything.

strid_t	glk_stream_get_current(void);

Returns	the	current	stream,	or	NULL	if	there	is	none.

5.1.	How	To	Print

void	glk_put_char(unsigned	char	ch);

This	prints	one	character	to	the	current	stream.	As	with	all	basic	functions,	the	character	is	assumed	to	be	in	the	Latin-1
character	encoding.	See	section	2,	"Character	Encoding".

void	glk_put_string(char	*s);

This	prints	a	null-terminated	string	to	the	current	stream.	It	is	exactly	equivalent	to

for	(ptr	=	s;	*ptr;	ptr++)

				glk_put_char(*ptr);

However,	it	may	be	more	efficient.

void	glk_put_buffer(char	*buf,	glui32	len);

This	prints	a	block	of	characters	to	the	current	stream.	It	is	exactly	equivalent	to

for	(i	=	0;	i	<	len;	i++)
				glk_put_char(buf[i]);

However,	it	may	be	more	efficient.

void	glk_put_char_stream(strid_t	str,	unsigned	char	ch);
void	glk_put_string_stream(strid_t	str,	char	*s);
void	glk_put_buffer_stream(strid_t	str,	char	*buf,	glui32	len);

These	are	the	same	functions,	except	that	you	specify	a	stream	to	print	to,	instead	of	using	the	current	stream.	Again,	it
is	illegal	for	str	to	be	NULL,	or	the	reference	of	an	input-only	stream.

void	glk_put_char_uni(glui32	ch);

This	prints	one	character	to	the	current	stream.	The	character	is	assumed	to	be	a	Unicode	code	point.	See	 section	2,
"Character	Encoding".

void	glk_put_string_uni(glui32	*s);

This	prints	a	string	of	Unicode	characters	to	the	current	stream.	It	is	equivalent	to	a	series	of	glk_put_char_uni()	calls.	A
string	ends	on	a	glui32	whose	value	is	0.

void	glk_put_buffer_uni(glui32	*buf,	glui32	len);

This	prints	a	block	of	Unicode	characters	to	the	current	stream.	It	is	equivalent	to	a	series	of	glk_put_char_uni()	calls.

void	glk_put_char_stream_uni(strid_t	str,	glui32	ch);
void	glk_put_string_stream_uni(strid_t	str,	glui32	*s);
void	glk_put_buffer_stream_uni(strid_t	str,	glui32	*buf,	glui32	len);

5.2.	How	To	Read

glsi32	glk_get_char_stream(strid_t	str);

This	reads	one	character	from	the	given	stream.	(There	is	no	notion	of	a	"current	input	stream.")	It	is	illegal	for	str	to	be
NULL,	or	an	output-only	stream.

The	result	will	be	between	0	and	255.	As	with	all	basic	text	functions,	Glk	assumes	the	Latin-1	encoding.	See	 section	2,
"Character	Encoding".	If	the	end	of	the	stream	has	been	reached,	the	result	will	be	-1.	 [Note	that	high-bit	characters
(128..255)	are	not	returned	as	negative	numbers.]

If	the	stream	contains	Unicode	data	–	for	example,	if	it	was	created	with	glk_stream_open_file_uni()	or
glk_stream_open_memory_uni()	–	then	characters	beyond	255	will	be	returned	as	0x3F	("?").

glui32	glk_get_buffer_stream(strid_t	str,	char	*buf,	glui32	len);

This	reads	len	characters	from	the	given	stream,	unless	the	end	of	stream	is	reached	first.	No	terminal	null	is	placed	in
the	buffer.	It	returns	the	number	of	characters	actually	read.

glui32	glk_get_line_stream(strid_t	str,	char	*buf,	glui32	len);

This	reads	characters	from	the	given	stream,	until	either	len-1	characters	have	been	read	or	a	newline	has	been	read.	It
then	puts	a	terminal	null	('\0')	character	on	the	end.	It	returns	the	number	of	characters	actually	read,	including	the
newline	(if	there	is	one)	but	not	including	the	terminal	null.

It	is	usually	more	efficient	to	read	several	characters	at	once	with	glk_get_buffer_stream()	or	glk_get_line_stream(),	as

opposed	to	calling	glk_get_char_stream()	several	times.

glsi32	glk_get_char_stream_uni(strid_t	str);

Reads	one	character	from	the	given	stream.	If	the	end	of	the	stream	has	been	reached,	the	result	will	be	-1.

glui32	glk_get_buffer_stream_uni(strid_t	str,	glui32	*buf,	glui32	len);

This	reads	len	Unicode	characters	from	the	given	stream,	unless	the	end	of	the	stream	is	reached	first.	No	terminal	null
is	placed	in	the	buffer.	It	returns	the	number	of	Unicode	characters	actually	read.

glui32	glk_get_line_stream_uni(strid_t	str,	glui32	*buf,	glui32	len);

This	reads	Unicode	characters	from	the	given	stream,	until	either	len-1	Unicode	characters	have	been	read	or	a	newline
has	been	read.	It	then	puts	a	terminal	null	(a	zero	value)	on	the	end.	It	returns	the	number	of	Unicode	characters
actually	read,	including	the	newline	(if	there	is	one)	but	not	including	the	terminal	null.

5.3.	Closing	Streams

void	glk_stream_close(strid_t	str,	stream_result_t	*result);

typedef	struct	stream_result_struct	{
				glui32	readcount;
				glui32	writecount;
}	stream_result_t;

This	closes	the	stream	str.	The	result	argument	points	to	a	structure	which	is	filled	in	with	the	final	character	counts	of
the	stream.	If	you	do	not	care	about	these,	you	may	pass	NULL	as	the	result	argument.

If	str	is	the	current	output	stream,	the	current	output	stream	is	set	to	NULL.

You	cannot	close	window	streams;	use	glk_window_close()	instead.	See	section	3.2,	"Window	Opening,	Closing,	and
Constraints".

5.4.	Stream	Positions

You	can	set	the	position	of	the	read/write	mark	in	a	stream.	 [Which	makes	one	wonder	why	they're	called	"streams"	in
the	first	place.	Oh	well.]

glui32	glk_stream_get_position(strid_t	str);

This	returns	the	position	of	the	mark.	For	memory	streams	and	binary	file	streams,	this	is	exactly	the	number	of
characters	read	or	written	from	the	beginning	of	the	stream	(unless	you	have	moved	the	mark	with
glk_stream_set_position().)	For	text	file	streams,	matters	are	more	ambiguous,	since	(for	example)	writing	one	byte	to	a
text	file	may	store	more	than	one	character	in	the	platform's	native	encoding.	You	can	only	be	sure	that	the	position
increases	as	you	read	or	write	to	the	file.

Additional	complication:	for	Latin-1	memory	and	file	streams,	a	character	is	a	byte.	For	Unicode	memory	and	file
streams	(those	created	by	glk_stream_open_file_uni()	and	glk_stream_open_memory_uni()),	a	character	is	a	32-bit
word.	So	in	a	binary	Unicode	file,	positions	are	multiples	of	four	bytes.

[If	this	bothers	you,	don't	use	binary	Unicode	files.	I	don't	think	they're	good	for	much	anyhow.]

void	glk_stream_set_position(strid_t	str,	glsi32	pos,	glui32	seekmode);

This	sets	the	position	of	the	mark.	The	position	is	controlled	by	pos,	and	the	meaning	of	pos	is	controlled	by	seekmode:

·		seekmode_Start:	pos	characters	after	the	beginning	of	the	file.
·		seekmode_Current:	pos	characters	after	the	current	position	(moving	backwards	if	pos	is	negative.)
·		seekmode_End:	pos	characters	after	the	end	of	the	file.	(pos	should	always	be	zero	or	negative,	so	that	this	will	move

backwards	to	a	position	within	the	file.)

It	is	illegal	to	specify	a	position	before	the	beginning	or	after	the	end	of	the	file.

In	binary	files,	the	mark	position	is	exact	–	it	corresponds	with	the	number	of	characters	you	have	read	or	written.	In
text	files,	this	mapping	can	vary,	because	of	linefeed	conversions	or	other	character-set	approximations.	(See	section	5,
"Streams".)	glk_stream_set_position()	and	glk_stream_get_position()	measure	positions	in	the	platform's	native
encoding	–	after	character	cookery.	Therefore,	in	a	text	stream,	it	is	safest	to	use	glk_stream_set_position()	only	to	move
to	the	beginning	or	end	of	a	file,	or	to	a	position	determined	by	glk_stream_get_position().

Again,	in	Latin-1	streams,	characters	are	bytes.	In	Unicode	streams,	characters	are	32-bit	words,	or	four	bytes	each.

A	window	stream	doesn't	have	a	movable	mark,	so	calling	glk_stream_set_position()	has	no	effect.
glk_stream_get_position()	on	a	window	stream	will	always	return	zero.	[It	might	make	more	sense	to	return	the	number
of	characters	written	to	the	window,	but	existing	libraries	do	not	support	this	and	it's	not	really	worth	adding	the
feature.]

5.5.	Styles

You	can	send	style-changing	commands	to	an	output	stream.	After	a	style	change,	new	text	which	is	printed	to	that
stream	will	be	given	the	new	style,	whatever	that	means	for	the	stream	in	question.	For	a	window	stream,	the	text	will
appear	in	that	style.	For	a	memory	stream,	style	changes	have	no	effect.	For	a	file	stream,	if	the	machine	supports	styled
text	files,	the	styles	may	be	written	to	the	file;	more	likely	the	style	changes	will	have	no	effect.

Styles	are	exclusive.	A	character	is	shown	with	exactly	one	style,	not	a	subset	of	the	possible	styles.

[Note	that	every	stream	and	window	has	its	own	idea	of	the	"current	style."	Sending	a	style	command	to	one	window	or
stream	does	not	affect	any	others.]	[Except	for	a	window's	echo	stream;	see	section	3.6,	"Echo	Streams" .]

The	styles	are	intended	to	distinguish	meaning	and	use,	not	formatting.	There	is	 no	standard	definition	of	what	each
style	will	look	like.	That	is	left	up	to	the	Glk	library,	which	will	choose	an	appearance	appropriate	for	the	platform's
interface	and	the	player's	preferences.

There	are	currently	eleven	styles	defined.	More	may	be	defined	in	the	future.

·		style_Normal:	The	style	of	normal	or	body	text.	A	new	window	or	stream	always	starts	with	style_Normal	as	the
current	style.

·		style_Emphasized:	Text	which	is	emphasized.
·		style_Preformatted:	Text	which	has	a	particular	arrangement	of	characters.	[This	style,	unlike	the	others,	does	have

a	standard	appearance;	it	will	always	be	a	fixed-width	font.	This	is	a	concession	to	practicality.	Games	often	want	to
display	maps	or	diagrams	using	character	graphics,	and	this	is	the	style	for	that.]

·		style_Header:	Text	which	introduces	a	large	section.	This	is	suitable	for	the	title	of	an	entire	game,	or	a	major
division	such	as	a	chapter.

·		style_Subheader:	Text	which	introduces	a	smaller	section	within	a	large	section.	 [In	a	Colossal-Cave-style	game,	this
is	suitable	for	the	name	of	a	room	(when	the	player	looks	around.)]

·		style_Alert:	Text	which	warns	of	a	dangerous	condition,	or	one	which	the	player	should	pay	attention	to.
·		style_Note:	Text	which	notifies	of	an	interesting	condition.	 [This	is	suitable	for	noting	that	the	player's	score	has

changed.]
·		style_BlockQuote:	Text	which	forms	a	quotation	or	otherwise	abstracted	text.
·		style_Input:	Text	which	the	player	has	entered.	You	should	generally	not	use	this	style	at	all;	the	library	uses	it	for

text	which	is	typed	during	a	line-input	request.	One	case	when	it	is	appropriate	for	you	to	use	style_Input	is	when
you	are	simulating	player	input	by	reading	commands	from	a	text	file.

·		style_User1:	This	style	has	no	particular	semantic	meaning.	You	may	define	a	meaning	relevant	to	your	own	work,
and	use	it	as	you	see	fit.

·		style_User2:	Another	style	available	for	your	use.

Styles	may	be	distinguished	on	screen	by	font,	size,	color,	indentation,	justification,	and	other	attributes.	Note	that	some
attributes	(notably	justification	and	indentation)	apply	to	entire	paragraphs.	If	possible	and	relevant,	you	should	apply	a
style	to	an	entire	paragraph	–	call	glk_set_style()	immediately	after	printing	the	newline	at	the	beginning	of	the	text,	and
do	the	same	at	the	end.

[For	example,	style_Header	may	well	be	centered	text.	If	you	print	"Welcome	to	Victim	(a	short	interactive	mystery)",
and	only	the	word	"Victim"	is	in	the	style_Header,	the	center-justification	attribute	will	be	lost.	Similarly,	a	block	quote	is
usually	indented	on	both	sides,	but	indentation	is	only	meaningful	when	applied	to	an	entire	line	or	paragraph,	so	block
quotes	should	take	up	an	entire	paragraph.	Contrariwise,	style_Emphasized	need	not	be	used	on	an	entire	paragraph.	It
is	often	used	for	single	emphasized	words	in	normal	text,	so	you	can	expect	that	it	will	appear	properly	that	way;	it	will
be	displayed	in	italics	or	underlining,	not	center-justified	or	indented.]

[Yes,	this	is	all	a	matter	of	mutual	agreement	between	game	authors	and	game	players.	It's	not	fixed	by	this
specification.	That's	natural	language	for	you.]

void	glk_set_style(glui32	val);

This	changes	the	style	of	the	current	output	stream.	val	should	be	one	of	the	values	listed	above.	However,	any	value	is
actually	legal;	if	the	interpreter	does	not	recognize	the	style	value,	it	will	treat	it	as	style_Normal.	[This	policy	allows	for
the	future	definition	of	styles	without	breaking	old	Glk	libraries.]

void	glk_set_style_stream(strid_t	str,	glui32	val);

This	changes	the	style	of	the	stream	str.

5.5.1.	Suggesting	the	Appearance	of	Styles

There	are	no	guarantees	of	how	styles	will	look,	but	you	can	make	suggestions.

void	glk_stylehint_set(glui32	wintype,	glui32	styl,	glui32	hint,	glsi32	val);
void	glk_stylehint_clear(glui32	wintype,	glui32	styl,	glui32	hint);

These	functions	set	and	clear	hints	about	the	appearance	of	one	style	for	a	particular	type	of	window.	You	can	also	set
wintype	to	wintype_AllTypes,	which	sets	(or	clears)	a	hint	for	all	types	of	window.	[There	is	no	equivalent	constant	to	set
a	hint	for	all	styles	of	a	single	window	type.]

Initially,	no	hints	are	set	for	any	window	type	or	style.	Note	that	having	no	hint	set	is	not	the	same	as	setting	a	hint	with
value	0.

These	functions	do	not	affect	existing	windows.	They	affect	the	windows	which	you	create	subsequently.	If	you	want	to
set	hints	for	all	your	game	windows,	call	glk_stylehint_set()	before	you	start	creating	windows.	If	you	want	different
hints	for	different	windows,	change	the	hints	before	creating	each	window.

[This	policy	makes	life	easier	for	the	interpreter.	It	knows	everything	about	a	particular	window's	appearance	when	the
window	is	created,	and	it	doesn't	have	to	change	it	while	the	window	exists.]

Hints	are	hints.	The	interpreter	may	ignore	them,	or	give	the	player	a	choice	about	whether	to	accept	them.	Also,	it	is
never	necessary	to	set	hints.	You	don't	have	to	suggest	that	style_Preformatted	be	fixed-width,	or	style_Emphasized	be
boldface	or	italic;	they	will	have	appropriate	defaults.	Hints	are	for	situations	when	you	want	to	change	the	appearance
of	a	style	from	what	it	would	ordinarily	be.	The	most	common	case	when	this	is	appropriate	is	for	the	styles	style_User1
and	style_User2.

There	are	currently	nine	style	hints	defined.	More	may	be	defined	in	the	future.

·		stylehint_Indentation:	How	much	to	indent	lines	of	text	in	the	given	style.	May	be	a	negative	number,	to	shift	the
text	out	(left)	instead	of	in	(right).	The	exact	metric	isn't	precisely	specified;	you	can	assume	that	+1	is	the	smallest
indentation	possible	which	is	clearly	visible	to	the	player.

·		stylehint_ParaIndentation:	How	much	to	indent	the	first	line	of	each	paragraph.	This	is	in	addition	to	the
indentation	specified	by	stylehint_Indentation.	This	too	may	be	negative,	and	is	measured	in	the	same	units	as
stylehint_Indentation.

·		stylehint_Justification:	The	value	of	this	hint	must	be	one	of	the	constants	stylehint_just_LeftFlush,
stylehint_just_LeftRight	(full	justification),	stylehint_just_Centered,	or	stylehint_just_RightFlush.

·		stylehint_Size:	How	much	to	increase	or	decrease	the	font	size.	This	is	relative;	0	means	the	interpreter's	default	font
size	will	be	used,	positive	numbers	increase	it,	and	negative	numbers	decrease	it.	Again,	+1	is	the	smallest	size
increase	which	is	easily	visible.	[The	amount	of	this	increase	may	not	be	constant.	+1	might	increase	an	8-point	font
to	9-point,	but	a	16-point	font	to	18-point.]

·		stylehint_Weight:	The	value	of	this	hint	must	be	1	for	heavy-weight	fonts	(boldface),	0	for	normal	weight,	and	-1	for
light-weight	fonts.

·		stylehint_Oblique:	The	value	of	this	hint	must	be	1	for	oblique	fonts	(italic),	or	0	for	normal	angle.
·		stylehint_Proportional:	The	value	of	this	hint	must	be	1	for	proportional-width	fonts,	or	0	for	fixed-width.
·		stylehint_TextColor:	The	foreground	color	of	the	text.	This	is	encoded	in	the	32-bit	hint	value:	the	top	8	bits	must	be

zero,	the	next	8	bits	are	the	red	value,	the	next	8	bits	are	the	green	value,	and	the	bottom	8	bits	are	the	blue	value.
Color	values	range	from	0	to	255.	[So	0x00000000	is	black,	0x00FFFFFF	is	white,	and	0x00FF0000	is	bright	red.]

·		stylehint_BackColor:	The	background	color	behind	the	text.	This	is	encoded	the	same	way	as	stylehint_TextColor.
·		stylehint_ReverseColor:	The	value	of	this	hint	must	be	0	for	normal	printing	(TextColor	on	BackColor),	or	1	for

reverse	printing	(BackColor	on	TextColor).	[Some	libraries	may	support	this	hint	but	not	the	TextColor	and
BackColor	hints.	Other	libraries	may	take	the	opposite	tack;	others	may	support	both,	or	neither.]

Again,	when	passing	a	style	hint	to	a	Glk	function,	any	value	is	actually	legal.	If	the	interpreter	does	not	recognize	the
stylehint	value,	it	will	ignore	it.	[This	policy	allows	for	the	future	definition	of	style	hints	without	breaking	old	Glk
libraries.]

5.5.2.	Testing	the	Appearance	of	Styles

You	can	suggest	the	appearance	of	a	window's	style	before	the	window	is	created;	after	the	window	is	created,	you	can
test	the	style's	actual	appearance.	These	functions	do	not	test	the	style	hints;	they	test	the	attribute	of	the	style	as	it
appears	to	the	player.

Note	that	although	you	cannot	change	the	appearance	of	a	window's	styles	after	the	window	is	created,	the	library	can.	A
platform	may	support	dynamic	preferences,	which	allow	the	player	to	change	text	formatting	while	your	program	is
running.	[Changes	that	affect	window	size	(such	as	font	size	changes)	will	be	signalled	by	an	evtype_Arrange	event.
However,	more	subtle	changes	(such	as	text	color	differences)	are	not	signalled.	If	you	test	the	appearance	of	styles	at
the	beginning	of	your	program,	you	must	keep	in	mind	the	possibility	that	the	player	will	change	them	later.]

glui32	glk_style_distinguish(winid_t	win,	glui32	styl1,	glui32	styl2);

This	returns	TRUE	(1)	if	the	two	styles	are	visually	distinguishable	in	the	given	window.	If	they	are	not,	it	returns	FALSE
(0).	The	exact	meaning	of	this	is	left	to	the	library	to	determine.

glui32	glk_style_measure(winid_t	win,	glui32	styl,	glui32	hint,	glui32	*result);

This	tries	to	test	an	attribute	of	one	style	in	the	given	window.	The	library	may	not	be	able	to	determine	the	attribute;	if
not,	this	returns	FALSE	(0).	If	it	can,	it	returns	TRUE	(1)	and	stores	the	value	in	the	location	pointed	at	by	result.	[As
usual,	it	is	legal	for	result	to	be	NULL,	although	fairly	pointless.]

The	meaning	of	the	value	depends	on	the	hint	which	was	tested:

·		stylehint_Indentation,	stylehint_ParaIndentation:	The	indentation	and	paragraph	indentation.	These	are	in	a	metric
which	is	platform-dependent.	[Most	likely	either	characters	or	pixels.]

·		stylehint_Justification:	One	of	the	constants	stylehint_just_LeftFlush,	stylehint_just_LeftRight,
stylehint_just_Centered,	or	stylehint_just_RightFlush.

·		stylehint_Size:	The	font	size.	Again,	this	is	in	a	platform-dependent	metric.	 [Pixels,	points,	or	simply	1	if	the	library
does	not	support	varying	font	sizes.]

·		stylehint_Weight:	1	for	heavy-weight	fonts	(boldface),	0	for	normal	weight,	and	-1	for	light-weight	fonts.
·		stylehint_Oblique:	1	for	oblique	fonts	(italic),	or	0	for	normal	angle.
·		stylehint_Proportional:	1	for	proportional-width	fonts,	or	0	for	fixed-width.
·		stylehint_TextColor,	stylehint_BackColor:	These	are	values	from	0x00000000	to	0x00FFFFFF,	encoded	as	described	in

section	5.5.1,	"Suggesting	the	Appearance	of	Styles".
·		stylehint_ReverseColor:	0	for	normal	printing,	1	if	the	foreground	and	background	colors	are	reversed.

Signed	values,	such	as	the	stylehint_Weight	value,	are	cast	to	glui32.	They	may	be	cast	to	glsi32	to	be	dealt	with	in	a	more
natural	context.

5.6.	The	Types	of	Streams

5.6.1.	Window	Streams

Every	window	has	an	output	stream	associated	with	it.	This	is	created	automatically,	with	filemode_Write,	when	you
open	the	window.	You	get	it	with	glk_window_get_stream().	Window	streams	always	have	rock	value	0.

A	window	stream	cannot	be	closed	with	glk_stream_close().	It	is	closed	automatically	when	you	close	its	window	with
glk_window_close().

Only	printable	characters	(including	newline)	may	be	printed	to	a	window	stream.	See	 section	2,	"Character	Encoding".

5.6.2.	Memory	Streams

You	can	open	a	stream	which	reads	from	or	writes	into	a	space	in	memory.

strid_t	glk_stream_open_memory(char	*buf,	glui32	buflen,	glui32	fmode,	glui32	rock);

fmode	must	be	filemode_Read,	filemode_Write,	or	filemode_ReadWrite.

buf	points	to	the	buffer	where	output	will	be	read	from	or	written	to.	buflen	is	the	length	of	the	buffer.

When	outputting,	if	more	than	buflen	characters	are	written	to	the	stream,	all	of	them	beyond	the	buffer	length	will	be
thrown	away,	so	as	not	to	overwrite	the	buffer.	(The	character	count	of	the	stream	will	still	be	maintained	correctly.	That
is,	it	will	count	the	number	of	characters	written	into	the	stream,	not	the	number	that	fit	in	the	buffer.)

If	buf	is	NULL,	or	for	that	matter	if	buflen	is	zero,	then	 everything	written	to	the	stream	is	thrown	away.	This	may	be
useful	if	you	are	interested	in	the	character	count.

When	inputting,	if	more	than	buflen	characters	are	read	from	the	stream,	the	stream	will	start	returning	-1	(signalling
end-of-file.)	If	buf	is	NULL,	the	stream	will	always	return	end-of-file.

The	data	is	written	to	the	buffer	exactly	as	it	was	passed	to	the	printing	functions	(glk_put_char(),	etc);	input	functions
will	read	the	data	exactly	as	it	exists	in	memory.	No	platform-dependent	cookery	will	be	done	on	it.	[You	can	write	a	disk
file	in	text	mode,	but	a	memory	stream	is	effectively	always	in	binary	mode.]

Unicode	values	(characters	greater	than	255)	cannot	be	written	to	the	buffer.	If	you	try,	they	will	be	stored	as	0x3F	("?")
characters.

Whether	reading	or	writing,	the	contents	of	the	buffer	are	undefined	until	the	stream	is	closed.	The	library	may	store	the
data	there	as	it	is	written,	or	deposit	it	all	in	a	lump	when	the	stream	is	closed.	It	is	illegal	to	change	the	contents	of	the
buffer	while	the	stream	is	open.

strid_t	glk_stream_open_memory_uni(glui32	*buf,	glui32	buflen,	glui32	fmode,	glui32	rock);

This	works	just	like	glk_stream_open_memory(),	except	that	the	buffer	is	an	array	of	32-bit	words,	instead	of	bytes.	This
allows	you	to	write	and	read	any	Unicode	character.	The	buflen	is	the	number	of	words,	not	the	number	of	bytes.

[If	the	buffer	contains	the	value	0xFFFFFFFF,	and	is	opened	for	reading,	the	reader	cannot	distinguish	that	value	from	-1
(end-of-file).	Fortunately	0xFFFFFFFF	is	not	a	valid	Unicode	character.]

5.6.3.	File	Streams

You	can	open	a	stream	which	reads	from	or	writes	to	a	disk	file.

strid_t	glk_stream_open_file(frefid_t	fileref,	glui32	fmode,	glui32	rock);

fileref	indicates	the	file	which	will	be	opened.	fmode	can	be	any	of	filemode_Read,	filemode_Write,
filemode_WriteAppend,	or	filemode_ReadWrite.	If	fmode	is	filemode_Read,	the	file	must	already	exist;	for	the	other
modes,	an	empty	file	is	created	if	none	exists.	If	fmode	is	filemode_Write,	and	the	file	already	exists,	it	is	truncated
down	to	zero	length	(an	empty	file);	the	other	modes	do	not	truncate.	If	fmode	is	filemode_WriteAppend,	the	file	mark	is
set	to	the	end	of	the	file.

[Note,	again,	that	this	doesn't	match	stdio's	fopen()	call	very	well.	See	 section	5,	"Streams"]

If	the	filemode	requires	the	file	to	exist,	but	the	file	does	not	exist,	glk_stream_open_file()	returns	NULL.

[Unfortunately,	many	(most)	older	interpreters	will	throw	a	fatal	error	in	this	case	(missing	file	for	filemode_Read)
rather	than	returning	NULL.	Therefore	it	is	best	to	call	glk_fileref_does_file_exist()	before	trying	to	read	a	file.]

The	file	may	be	read	or	written	in	text	or	binary	mode;	this	is	determined	by	the	fileref	argument.	Similarly,	platform-
dependent	attributes	such	as	file	type	are	determined	by	fileref.	See	section	6,	"File	References".

When	writing	in	binary	mode,	byte	values	are	written	directly	to	the	file.	(Writing	calls	such	as	glk_put_char_stream()
are	defined	in	terms	of	Latin-1	characters,	so	the	binary	file	can	be	presumed	to	use	Latin-1.	Newlines	will	remain	as
0x0A	bytes.)	Unicode	values	(characters	greater	than	255)	cannot	be	written	to	the	file.	If	you	try,	they	will	be	stored	as
0x3F	("?")	characters.

When	writing	in	text	mode,	character	data	is	written	in	an	encoding	appropriate	to	the	platform;	this	may	be	Latin-1	or
some	other	format.	Newlines	may	be	converted	to	other	line	break	sequences.	Unicode	values	may	be	stored	exactly,

approximated,	or	abbreviated,	depending	on	what	the	platform's	text	files	support.

strid_t	glk_stream_open_file_uni(frefid_t	fileref,	glui32	fmode,	glui32	rock);

This	works	just	like	glk_stream_open_file(),	except	that	in	binary	mode,	characters	are	written	and	read	as	four-byte
(big-endian)	values.	This	allows	you	to	write	and	read	any	Unicode	character.

In	text	mode,	the	file	is	written	and	read	using	the	UTF-8	Unicode	encoding.	Files	should	be	written	without	a	byte-
ordering	mark.	This	ensures	that	text-mode	files	created	by	glk_stream_open_file()	and	glk_stream_open_file_uni()	will
be	identical	if	only	ASCII	characters	(32-127)	are	written.

[Previous	versions	of	this	spec	said,	of	glk_stream_open_file_uni():	"In	text	mode,	the	file	is	written	and	read	in	a
platform-dependent	way,	which	may	or	may	not	handle	all	Unicode	characters."	This	left	open	the	possibility	of	other
native	text-file	formats,	as	well	as	richer	formats	such	as	RTF	or	HTML.	Richer	formats	do	not	seem	to	have	ever	been
used;	and	at	this	point,	UTF-8	is	widespread	enough	for	us	to	mandate	it.]

To	summarize:

·		glk_stream_open_file	(byte	stream),	text	mode:	platform	native	text
·		glk_stream_open_file	(byte	stream),	binary	mode:	Latin-1
·		glk_stream_open_file_uni	(word	stream),	text	mode:	UTF-8
·		glk_stream_open_file_uni	(word	stream),	binary	mode:	four-byte	(big-endian)	integers

However,	if	the	fileref	was	created	via	a	prompt	(glk_fileref_create_by_prompt),	the	player	may	have	selected	format
options	that	override	these	rules.

[See	also	the	comments	about	text	and	binary	mode,	 section	6,	"File	References".]

5.6.4.	Resource	Streams

You	can	open	a	stream	which	reads	from	(but	not	writes	to)	a	resource	file.

[Typically	this	is	embedded	in	a	Blorb	file,	as	Blorb	is	the	official	resource-storage	format	of	Glk.	A	Blorb	file	can	contain
images	and	sounds,	but	it	can	also	contain	raw	data	files,	which	are	accessed	by	the	following	functions.	A	data	file	is
identified	by	number,	not	by	a	filename.	The	Blorb	usage	field	will	be	'Data'.	The	chunk	type	will	be	'TEXT'	for	text
resources,	'BINA'	or	'FORM'	for	binary	resources.]

[For	a	'FORM'	Blorb	chunk,	the	stream	should	start	reading	at	the	beginning	of	the	chunk	header	–	that	is,	it	should	read
the	'FORM'	and	length	words	before	the	chunk	content.	For	'TEXT'	and	'BINA'	chunks,	the	stream	should	skip	the	header
and	begin	with	the	chunk	content.	This	distinction	is	important	when	embedding	AIFF	sounds	or	Quetzal	saved	games,
for	example.]

[Note	that	this	FORM	distinction	was	added	to	the	Glk	0.7.4	spec	in	July	2012,	several	months	after	the	spec	went	out.
This	is	bad	form,	no	pun	intended,	but	I	don't	think	it'll	cause	headaches.	No	games	use	the	resource	stream	feature	yet,
as	far	as	I	know.	A	Glk	library	written	in	the	interregnum	of	early	2012	will	fail	to	recognize	FORM	chunks,	and	if	a	game
tries	to	use	one,	glk_stream_open_resource	will	return	NULL.]

[If	the	running	program	is	not	associated	with	a	Blorb	file,	the	library	may	look	for	data	files	as	actual	files	instead.
These	would	be	named	"DATA1",	"DATA2",	etc,	with	a	suffix	distinguishing	text	and	binary	files.	See	"Other	Resource
Arrangements"	in	the	Blorb	spec:	http://eblong.com/zarf/blorb/.	The	stream	should	always	begin	at	the	beginning	of	the
file,	in	this	case;	there	is	no	BINA/FORM	distinction	to	worry	about.]

strid_t	glk_stream_open_resource(glui32	filenum,	glui32	rock);
strid_t	glk_stream_open_resource_uni(glui32	filenum,	glui32	rock);

Open	the	given	data	resource	for	reading	(only),	as	a	normal	or	Unicode	stream.	 [Note	that	there	is	no	notion	of	file
usage	–	the	resource	does	not	have	to	be	specified	as	"saved	game"	or	whatever.]

If	no	resource	chunk	of	the	given	number	exists,	the	open	function	returns	NULL.

As	with	file	streams,	a	binary	resource	stream	reads	the	resource	as	bytes	(for	a	normal	stream)	or	as	four-byte	(big-
endian)	words	(for	a	Unicode	stream).	A	text	resource	stream	reads	characters	encoded	as	Latin-1	(for	normal)	or	UTF-8
(for	Unicode).	[Thus,	the	difference	between	text	and	binary	resources	is	only	important	when	opened	as	a	Unicode
stream.]

http://eblong.com/zarf/blorb/

When	reading	from	a	resource	stream,	newlines	are	not	remapped,	even	if	they	normally	would	be	when	reading	from	a
text	file	on	the	host	OS.	If	you	read	a	line	(glk_get_line_stream	or	glk_get_line_stream_uni),	a	Unix	newline	(0x0A)
terminates	the	line.

res	=	glk_gestalt(gestalt_ResourceStream,	0);

This	returns	1	if	the	glk_stream_open_resource()	and	glk_stream_open_resource_uni()	functions	are	available.	If	it
returns	0,	you	should	not	call	them.

5.7.	Other	Stream	Functions

strid_t	glk_stream_iterate(strid_t	str,	glui32	*rockptr);

This	iterates	through	all	the	existing	streams.	See	 section	1.6.2,	"Iterating	Through	Opaque	Objects".

glui32	glk_stream_get_rock(strid_t	str);

This	retrieves	the	stream's	rock	value.	See	 section	1.6.1,	"Rocks".	Window	streams	always	have	rock	0;	all	other	streams
return	whatever	rock	you	created	them	with.

6.	File	References

You	deal	with	disk	files	using	file	references.	Each	fileref	is	an	opaque	C	structure	pointer;	see	 section	1.6,	"Opaque
Objects".

A	file	reference	contains	platform-specific	information	about	the	name	and	location	of	the	file,	and	possibly	its	type,	if
the	platform	has	a	notion	of	file	type.	It	also	includes	a	flag	indication	whether	the	file	is	a	text	file	or	binary	file.	[Note
that	this	is	different	from	the	standard	C	I/O	library,	in	which	you	specify	text	or	binary	mode	when	the	file	is	opened.]

A	fileref	does	not	have	to	refer	to	a	file	which	actually	exists.	You	can	create	a	fileref	for	a	nonexistent	file,	and	then
open	it	in	write	mode	to	create	a	new	file.

You	always	provide	a	usage	argument	when	you	create	a	fileref.	The	usage	indicates	the	file	type	and	the	mode	(text	or
binary.)	It	must	be	the	logical-or	of	a	file-type	constant	and	a	mode	constant.	These	values	are	used	when	you	create	a
new	file,	and	also	to	filter	file	lists	when	the	player	is	selecting	a	file	to	load.	The	constants	are	as	follows:

·		fileusage_SavedGame:	A	file	which	stores	game	state.
·		fileusage_Transcript:	A	file	which	contains	a	stream	of	text	from	the	game	(often	an	echo	stream	from	a	window.)
·		fileusage_InputRecord:	A	file	which	records	player	input.
·		fileusage_Data:	Any	other	kind	of	file	(preferences,	statistics,	arbitrary	data.)
·		fileusage_BinaryMode:	The	file	contents	will	be	stored	exactly	as	they	are	written,	and	read	back	in	the	same	way.

The	resulting	file	may	not	be	viewable	on	platform-native	text	file	viewers.
·		fileusage_TextMode:	The	file	contents	will	be	transformed	to	a	platform-native	text	file	as	they	are	written	out.

Newlines	may	be	converted	to	linefeeds	or	linefeed-plus-carriage-return	combinations;	Latin-1	characters	may	be
converted	to	native	character	codes.	When	reading	a	file	in	text	mode,	native	line	breaks	will	be	converted	back	to
newline	(0x0A)	characters,	and	native	character	codes	may	be	converted	to	Latin-1	or	UTF-8.	[Line	breaks	will	always
be	converted;	other	conversions	are	more	questionable.	If	you	write	out	a	file	in	text	mode,	and	then	read	it	back	in
text	mode,	high-bit	characters	(128	to	255)	may	be	transformed	or	lost.]

In	general,	you	should	use	text	mode	if	the	player	expects	to	read	the	file	with	a	platform-native	text	editor;	you	should
use	binary	mode	if	the	file	is	to	be	read	back	by	your	program,	or	if	the	data	must	be	stored	exactly.	Text	mode	is
appropriate	for	fileusage_Transcript;	binary	mode	is	appropriate	for	fileusage_SavedGame	and	probably	for
fileusage_InputRecord.	fileusage_Data	files	may	be	text	or	binary,	depending	on	what	you	use	them	for.

When	a	fileref	is	created	via	a	user	prompt	(glk_fileref_create_by_prompt),	it	may	include	extra	file	type	information.
[For	example,	a	prompt	to	write	a	transcript	file	might	include	a	choice	of	text	encodings,	or	even	alternate	formats	such
as	RTF	or	HTML.]	This	player-selected	information	will	override	the	default	encoding	rules	noted	above.	When	a	fileref
is	created	non-interactively	(glk_fileref_create_by_name,	glk_fileref_create_temp)	the	default	rules	always	apply.

[See	also	the	comments	about	encoding,	 section	5.6.3,	"File	Streams".]

6.1.	The	Types	of	File	References

There	are	four	different	functions	for	creating	a	fileref,	depending	on	how	you	wish	to	specify	it.	Remember	that	it	is
always	possible	that	a	fileref	creation	will	fail	and	return	NULL.

frefid_t	glk_fileref_create_temp(glui32	usage,	glui32	rock);

This	creates	a	reference	to	a	temporary	file.	It	is	always	a	new	file	(one	which	does	not	yet	exist).	The	file	(once	created)
will	be	somewhere	out	of	the	player's	way.	[This	is	why	no	name	is	specified;	the	player	will	never	need	to	know	it.]

A	temporary	file	should	not	be	used	for	long-term	storage.	It	may	be	deleted	automatically	when	the	program	exits,	or	at
some	later	time,	say	when	the	machine	is	turned	off	or	rebooted.	You	do	not	have	to	worry	about	deleting	it	yourself.

frefid_t	glk_fileref_create_by_prompt(glui32	usage,	glui32	fmode,	glui32	rock);

This	creates	a	reference	to	a	file	by	asking	the	player	to	locate	it.	The	library	may	simply	prompt	the	player	to	type	a
name,	or	may	use	a	platform-native	file	navigation	tool.	(The	prompt,	if	any,	is	inferred	from	the	usage	argument.)

fmode	must	be	one	of	these	values:

·		filemode_Read:	The	file	must	already	exist;	the	player	will	be	asked	to	select	from	existing	files	which	match	the
usage.

·		filemode_Write:	The	file	should	not	exist;	if	the	player	selects	an	existing	file,	he	will	be	warned	that	it	will	be
replaced.

·		filemode_ReadWrite:	The	file	may	or	may	not	exist;	if	it	already	exists,	the	player	will	be	warned	that	it	will	be
modified.

·		filemode_WriteAppend:	Same	behavior	as	filemode_ReadWrite.

The	fmode	argument	should	generally	match	the	fmode	which	will	be	used	to	open	the	file.

[It	is	likely	that	the	prompt	or	file	tool	will	have	a	"cancel"	option.	If	the	player	chooses	this,
glk_fileref_create_by_prompt()	will	return	NULL.	This	is	a	major	reason	why	you	should	make	sure	the	return	value	is
valid	before	you	use	it.]

The	recommended	file	suffixes	for	files	are	".glkdata"	for	fileusage_Data,	".glksave"	for	fileusage_SavedGame,	".txt"	for
fileusage_Transcript	and	fileusage_InputRecord.

The	prompt	may	also	include	a	choice	of	file	formats.	This	will	affect	the	format	of	the	file	(written	or	parsed),	as	noted
earlier.

frefid_t	glk_fileref_create_by_name(glui32	usage,	char	*name,	glui32	rock);

This	creates	a	reference	to	a	file	with	a	specific	name.	The	file	will	be	in	a	fixed	location	relevant	to	your	program,	and
visible	to	the	player.	[This	usually	means	"in	the	same	directory	as	your	program."]

Earlier	versions	of	the	Glk	spec	specified	that	the	library	may	have	to	extend,	truncate,	or	change	your	name	argument
in	order	to	produce	a	legal	native	filename.	This	remains	true.	However,	since	Glk	was	originally	proposed,	the	world
has	largely	reached	concensus	about	what	a	filename	looks	like.	Therefore,	it	is	worth	including	some	recommended
library	behavior	here.	Libraries	that	share	this	behavior	will	more	easily	be	able	to	exchange	files,	which	may	be
valuable	both	to	authors	(distributing	data	files	for	games)	and	for	players	(moving	data	between	different	computers	or
different	applications).

The	library	should	take	the	given	filename	argument,	and	delete	any	characters	illegal	for	a	filename.	This	will	include
all	of	the	following	characters	(and	more,	if	the	OS	requires	it):	slash,	backslash,	angle	brackets	(less-than	and	greater-
than),	colon,	double-quote,	pipe	(vertical	bar),	question-mark,	asterisk.	The	library	should	also	truncate	the	argument	at
the	first	period	(delete	the	first	period	and	any	following	characters).	If	the	result	is	the	empty	string,	change	it	to	the
string	"null".

It	should	then	append	an	appropriate	suffix,	depending	on	the	usage:	".glkdata"	for	fileusage_Data,	".glksave"	for
fileusage_SavedGame,	".txt"	for	fileusage_Transcript	and	fileusage_InputRecord.

The	above	behavior	is	not	a	requirement	of	the	Glk	spec.	Older	implementations	can	continue	doing	what	they	do.	Some
programs	(e.g.	web-based	interpreters)	may	not	have	access	to	a	traditional	filesystem	at	all,	and	to	them	these
recommendations	will	be	meaningless.

On	the	other	side	of	the	coin,	the	game	file	should	not	press	these	limitations.	Best	practice	is	for	the	game	to	pass	a

filename	containing	only	letters	and	digits,	beginning	with	a	letters,	and	not	mixing	upper	and	lower	case.	Avoid	overly-
long	filenames.

[The	earlier	Glk	spec	gave	more	stringent	recommendations:	"No	more	than	8	characters,	consisting	entirely	of	upper-
case	letters	and	numbers,	starting	with	a	letter".	The	DOS	era	is	safely	contained,	if	not	over,	so	this	has	been	relaxed.
The	I7	manual	recommends	"23	characters	or	fewer".]

[To	address	other	complications:]

[Some	filesystems	are	case-insensitive.	If	you	create	two	filerefs	with	the	names	"File"	and	"FILE",	they	may	wind	up
pointing	to	the	same	file,	or	they	may	not.	Avoid	doing	this.]

[Some	programs	will	look	for	all	files	in	the	same	directory	as	the	program	itself	(or,	for	interpreted	games,	in	the	same
directory	as	the	game	file).	Others	may	keep	files	in	a	data-specific	directory	appropriate	for	the	user	(e.g.,	~/Library	on
MacOS).]

[If	a	game	interpreter	uses	a	data-specific	directory,	there	is	a	question	of	whether	to	use	a	common	location,	or	divide	it
into	game-specific	subdirectories.	(Or	to	put	it	another	way:	should	the	namespace	of	named	files	be	per-game	or	app-
wide?)	Since	data	files	may	be	exchanged	between	games,	they	should	be	given	an	app-wide	namespace.	In	contrast,
saved	games	should	be	per-game,	as	they	can	never	be	exchanged.	Transcripts	and	input	records	can	go	either	way.]

[When	updating	an	older	library	to	follow	these	recommendations,	consider	backwards	compatibility	for	games	already
installed.	When	opening	an	existing	file	(that	is,	not	in	a	write-only	mode)	it	may	be	worth	looking	under	the	older	name
(suffix)	if	the	newer	one	does	not	already	exist.]

[Game-save	files	are	already	stored	with	a	variety	of	file	suffixes,	since	that	usage	goes	back	to	the	oldest	IF	interpreters,
long	predating	Glk.	It	is	reasonable	to	treat	them	in	some	special	way,	while	hewing	closer	to	these	recommendations
for	data	files.]

[In	case	anyone	cares,	fileusage_Data	(".glkdata")	can	be	associated	with	the	MIME	type	application/x-glkdata;
fileusage_SavedGame	(".glksave")	with	application/x-glksave.	".glksave"	files	are	commonly	Quetzal	save	data	(but	might
be	other	formats	for	IF	systems	other	than	Z-code	and	Glulx).	".glkdata"	can	contain	any	data,	obviously.	So	knowing	the
MIME	type	doesn't	get	you	much,	but	we	offer	them	anyway.]

frefid_t	glk_fileref_create_from_fileref(glui32	usage,	frefid_t	fref,	glui32	rock);

This	copies	an	existing	file	reference,	but	changes	the	usage.	(The	original	fileref	is	not	modified.)

The	use	of	this	function	can	be	tricky.	If	you	change	the	type	of	the	fileref	(fileusage_Data,	fileusage_SavedGame,	etc),
the	new	reference	may	or	may	not	point	to	the	same	actual	disk	file.	[Most	platforms	use	suffixes	to	indicate	file	type,	so
it	typically	will	not.	See	the	earlier	comments	about	recommended	file	suffixes.]	If	you	do	this,	and	open	both	file
references	for	writing,	the	results	are	unpredictable.	It	is	safest	to	change	the	type	of	a	fileref	only	if	it	refers	to	a
nonexistent	file.

If	you	change	the	mode	of	a	fileref	(fileusage_TextMode,	fileusage_BinaryMode),	but	leave	the	rest	of	the	type
unchanged,	the	new	fileref	will	definitely	point	to	the	same	disk	file	as	the	old	one.

Obviously,	if	you	write	to	a	file	in	text	mode	and	then	read	from	it	in	binary	mode,	the	results	are	platform-dependent.

6.2.	Other	File	Reference	Functions

void	glk_fileref_destroy(frefid_t	fref);

Destroys	a	fileref	which	you	have	created.	This	does	not	affect	the	disk	file;	it	just	reclaims	the	resources	allocated	by
the	glk_fileref_create...	function.

It	is	legal	to	destroy	a	fileref	after	opening	a	file	with	it	(while	the	file	is	still	open.)	The	fileref	is	only	used	for	the
opening	operation,	not	for	accessing	the	file	stream.

frefid_t	glk_fileref_iterate(frefid_t	fref,	glui32	*rockptr);

This	iterates	through	all	the	existing	filerefs.	See	 section	1.6.2,	"Iterating	Through	Opaque	Objects".

glui32	glk_fileref_get_rock(frefid_t	fref);

This	retrieves	the	fileref's	rock	value.	See	 section	1.6.1,	"Rocks".

void	glk_fileref_delete_file(frefid_t	fref);

This	deletes	the	file	referred	to	by	fref.	It	does	not	destroy	the	fileref	itself.

You	should	only	call	this	with	a	fileref	that	refers	to	an	existing	file.

glui32	glk_fileref_does_file_exist(frefid_t	fref);

This	returns	TRUE	(1)	if	the	fileref	refers	to	an	existing	file,	and	FALSE	(0)	if	not.

7.	Graphics

In	accordance	with	this	modern	age,	Glk	provides	for	a	modicum	of	graphical	flair.	It	does	 not	attempt	to	be	a	complete
graphical	toolkit.	Those	already	exist.	Glk	strikes	the	usual	uncomfortable	balance	between	power,	portability,	and	ease
of	implementation:	commands	for	arranging	pre-supplied	images	on	the	screen	and	intermixed	with	text.

Graphics	is	an	optional	capability	in	Glk;	not	all	libraries	support	graphics.	This	should	not	be	a	surprise.

7.1.	Image	Resources

Most	of	the	graphics	commands	in	Glk	deal	with	image	resources.	Your	program	does	not	have	to	worry	about	how
images	are	stored.	Everything	is	a	resource,	and	a	resource	is	referred	to	by	an	integer	identifier.	You	may,	for	example,
call	a	function	to	display	image	number	17.	The	format,	loading,	and	displaying	of	that	image	is	entirely	up	to	the	Glk
library	for	the	platform	in	question.

Of	course,	it	is	also	desirable	to	have	a	platform-independent	way	to	store	sounds	and	images.	Blorb	is	the	official
resource-storage	format	of	Glk.	A	Glk	library	does	not	have	to	understand	Blorb,	but	it	is	more	likely	to	understand	Blorb
than	any	other	format.

[Glk	does	not	specify	the	exact	format	of	images,	but	Blorb	does.	Images	in	a	Blorb	archive	must	be	PNG	or	JPEG	files.
More	formats	may	be	added	if	real-world	experience	shows	it	to	be	desirable.	However,	that	is	in	the	domain	of	the
Blorb	specification.	The	Glk	spec,	and	Glk	programming,	will	not	change.]

At	present,	images	can	only	be	drawn	in	graphics	windows	and	text	buffer	windows.	In	fact,	a	library	may	not
implement	both	of	these	possibilities.	You	should	test	each	with	the	gestalt_DrawImage	selector	if	you	plan	to	use	it.	See
section	7.4,	"Testing	for	Graphics	Capabilities".

glui32	glk_image_get_info(glui32	image,	glui32	*width,	glui32	*height);

This	gets	information	about	the	image	resource	with	the	given	identifier.	It	returns	TRUE	(1)	if	there	is	such	an	image,
and	FALSE	(0)	if	not.	You	can	also	pass	pointers	to	width	and	height	variables;	if	the	image	exists,	the	variables	will	be
filled	in	with	the	width	and	height	of	the	image,	in	pixels.	(You	can	pass	NULL	for	either	width	or	height	if	you	don't	care
about	that	information.)

[You	should	always	use	this	function	to	measure	the	size	of	images	when	you	are	creating	your	display.	Do	this	even	if
you	created	the	images,	and	you	know	how	big	they	"should"	be.	This	is	because	images	may	be	scaled	in	translating
from	one	platform	to	another,	or	even	from	one	machine	to	another.	A	Glk	library	might	display	all	images	larger	than
their	original	size,	because	of	screen	resolution	or	player	preference.	Images	will	be	scaled	proportionally,	but	you	still
need	to	call	glk_image_get_info()	to	determine	their	absolute	size.]

glui32	glk_image_draw(winid_t	win,	glui32	image,	glsi32	val1,	glsi32	val2);

This	draws	the	given	image	resource	in	the	given	window.	The	position	of	the	image	is	given	by	val1	and	val2,	but	their
meaning	varies	depending	on	what	kind	of	window	you	are	drawing	in.	See	section	7.2,	"Graphics	in	Graphics	Windows"
and	section	7.3,	"Graphics	in	Text	Buffer	Windows" .

This	function	returns	a	flag	indicating	whether	the	drawing	operation	succeeded.	 [A	FALSE	result	can	occur	for	many
reasons.	The	image	data	might	be	corrupted;	the	library	may	not	have	enough	memory	to	operate;	there	may	be	no
image	with	the	given	identifier;	the	window	might	not	support	image	display;	and	so	on.]

glui32	glk_image_draw_scaled(winid_t	win,	glui32	image,	glsi32	val1,	glsi32	val2,	glui32	width,	

glui32	height);

This	is	similar	to	glk_image_draw(),	but	it	scales	the	image	to	the	given	width	and	height,	instead	of	using	the	image's
standard	size.	(You	can	measure	the	standard	size	with	glk_image_get_info().)

If	width	or	height	is	zero,	nothing	is	drawn.	Since	those	arguments	are	unsigned	integers,	they	cannot	be	negative.	If	you
pass	in	a	negative	number,	it	will	be	interpreted	as	a	very	large	positive	number,	which	is	almost	certain	to	end	badly.

7.2.	Graphics	in	Graphics	Windows

A	graphics	window	is	a	rectangular	canvas	of	pixels,	upon	which	you	can	draw	images.	The	contents	are	entirely	under
your	control.	You	can	draw	as	many	images	as	you	like,	at	any	positions	–	overlapping	if	you	like.	If	the	window	is
resized,	you	are	responsible	for	redrawing	everything.	See	section	3.5.5,	"Graphics	Windows".

If	you	call	glk_image_draw()	or	glk_image_draw_scaled()	in	a	graphics	window,	val1	and	val2	are	interpreted	as	X	and	Y
coordinates.	The	image	will	be	drawn	with	its	upper	left	corner	at	this	position.

It	is	legitimate	for	part	of	the	image	to	fall	outside	the	window;	the	excess	is	not	drawn.	Note	that	these	are	signed
arguments,	so	you	can	draw	an	image	which	falls	outside	the	left	or	top	edge	of	the	window,	as	well	as	the	right	or
bottom.

There	are	a	few	other	commands	which	apply	to	graphics	windows:

void	glk_window_set_background_color(winid_t	win,	glui32	color);

This	sets	the	window's	background	color.	It	does	 not	change	what	is	currently	displayed;	it	only	affects	subsequent
clears	and	resizes.	The	initial	background	color	of	each	window	is	white.

Colors	are	encoded	in	a	32-bit	value:	the	top	8	bits	must	be	zero,	the	next	8	bits	are	the	red	value,	the	next	8	bits	are	the
green	value,	and	the	bottom	8	bits	are	the	blue	value.	Color	values	range	from	0	to	255.	[So	0x00000000	is	black,
0x00FFFFFF	is	white,	and	0x00FF0000	is	bright	red.]

[This	function	may	only	be	used	with	graphics	windows.	To	set	background	colors	in	a	text	window,	use	text	styles	with
color	hints;	see	section	5.5,	"Styles".]

void	glk_window_fill_rect(winid_t	win,	glui32	color,	glsi32	left,	glsi32	top,	glui32	width,	glui32	
height);

This	fills	the	given	rectangle	with	the	given	color.	It	is	legitimate	for	part	of	the	rectangle	to	fall	outside	the	window.	If
width	or	height	is	zero,	nothing	is	drawn.

void	glk_window_erase_rect(winid_t	win,	glsi32	left,	glsi32	top,	glui32	width,	glui32	height);

This	fills	the	given	rectangle	with	the	window's	background	color.

You	can	also	fill	an	entire	graphics	window	with	its	background	color	by	calling	glk_window_clear().

[Note	that	graphics	windows	do	not	support	a	full	set	of	object-drawing	commands,	nor	can	you	draw	text	in	them.	That
may	be	available	in	a	future	Glk	extension.	For	now,	it	seems	reasonable	to	limit	the	task	to	a	single	primitive,	the
drawing	of	a	raster	image.	And	then	there's	the	ability	to	fill	a	rectangle	with	a	solid	color	–	a	small	extension,	and
hopefully	no	additional	work	for	the	library,	since	it	can	already	clear	with	arbitrary	background	colors.	In	fact,	if
glk_window_fill_rect()	did	not	exist,	an	author	could	invent	it	–	by	briefly	setting	the	background	color,	erasing	a
rectangle,	and	restoring.]

7.3.	Graphics	in	Text	Buffer	Windows

A	text	buffer	is	a	linear	text	stream.	You	can	draw	images	in-line	with	this	text.	If	you	are	familiar	with	HTML,	you
already	understand	this	model.	You	draw	images	with	flags	indicating	alignment.	The	library	takes	care	of	scrolling,
resizing,	and	reformatting	text	buffer	windows.

If	you	call	glk_image_draw()	or	glk_image_draw_scaled()	in	a	text	buffer	window,	val1	gives	the	image	alignment.	The
val2	argument	is	currently	unused,	and	should	always	be	zero.

·		imagealign_InlineUp:	The	image	appears	at	the	current	point	in	the	text,	sticking	up.	That	is,	the	bottom	edge	of	the

image	is	aligned	with	the	baseline	of	the	line	of	text.
·		imagealign_InlineDown:	The	image	appears	at	the	current	point,	and	the	top	edge	is	aligned	with	the	top	of	the	line

of	text.
·		imagealign_InlineCenter:	The	image	appears	at	the	current	point,	and	it	is	centered	between	the	top	and	baseline	of

the	line	of	text.	If	the	image	is	taller	than	the	line	of	text,	it	will	stick	up	and	down	equally.
·		imagealign_MarginLeft:	The	image	appears	in	the	left	margin.	Subsequent	text	will	be	displayed	to	the	right	of	the

image,	and	will	flow	around	it	–	that	is,	it	will	be	left-indented	for	as	many	lines	as	it	takes	to	pass	the	image.
·		imagealign_MarginRight:	The	image	appears	in	the	right	margin,	and	subsequent	text	will	flow	around	it	on	the	left.

The	two	"margin"	alignments	require	some	care.	To	allow	proper	positioning,	images	using	imagealign_MarginLeft	and
imagealign_MarginRight	must	be	placed	at	the	beginning	of	a	line.	That	is,	you	may	only	call	glk_image_draw()	(with
these	two	alignments)	in	a	window,	if	you	have	just	printed	a	newline	to	the	window's	stream,	or	if	the	window	is
entirely	empty.	If	you	margin-align	an	image	in	a	line	where	text	has	already	appeared,	no	image	will	appear	at	all.

Inline-aligned	images	count	as	"text"	for	the	purpose	of	this	rule.

You	may	have	images	in	both	margins	at	the	same	time.

It	is	also	legal	to	have	more	than	one	image	in	the	 same	margin	(left	or	right.)	However,	this	is	not	recommended.	It	is
difficult	to	predict	how	text	will	wrap	in	that	situation,	and	libraries	may	err	on	the	side	of	conservatism.

You	may	wish	to	"break"	the	stream	of	text	down	below	the	current	margin	image.	Since	lines	of	text	can	be	in	any	font
and	size,	you	cannot	do	this	by	counting	newlines.	Instead,	use	this	function:

void	glk_window_flow_break(winid_t	win);

If	the	current	point	in	the	text	is	indented	around	a	margin-aligned	image,	this	acts	like	the	correct	number	of	newlines
to	start	a	new	line	below	the	image.	(If	there	are	several	margin-aligned	images,	it	goes	below	all	of	them.)	If	the	current
point	is	not	beside	a	margin-aligned	image,	this	call	has	no	effect.

When	a	text	buffer	window	is	resized,	a	flow-break	behaves	cleverly;	it	may	become	active	or	inactive	as	necessary.	You
can	consider	this	function	to	insert	an	invisible	mark	in	the	text	stream.	The	mark	works	out	how	many	newlines	it
needs	to	be	whenever	the	text	is	formatted	for	display.

An	example	of	the	use	of	glk_window_flow_break():	If	you	display	a	left-margin	image	at	the	start	of	every	line,	they	can
stack	up	in	a	strange	diagonal	way	that	eventually	squeezes	all	the	text	off	the	screen.	[If	you	can't	picture	this,	draw
some	diagrams.	Make	the	margin	images	more	than	one	line	tall,	so	that	each	line	starts	already	indented	around	the
last	image.]	To	avoid	this	problem,	call	glk_window_flow_break()	immediately	before	glk_image_draw()	for	every
margin-aligned	image.

In	all	windows	other	than	text	buffers,	glk_window_flow_break()	has	no	effect.

7.4.	Testing	for	Graphics	Capabilities

Before	calling	Glk	graphics	functions,	you	should	use	the	following	gestalt	selectors.

glui32	res;
res	=	glk_gestalt(gestalt_Graphics,	0);

This	returns	1	if	the	overall	suite	of	graphics	functions	is	available.	This	includes	glk_image_draw(),
glk_image_draw_scaled(),	glk_image_get_info(),	glk_window_erase_rect(),	glk_window_fill_rect(),
glk_window_set_background_color(),	and	glk_window_flow_break().	It	also	includes	the	capability	to	create	graphics
windows.

If	this	selector	returns	0,	you	should	not	try	to	call	these	functions.	They	may	have	no	effect,	or	they	may	cause	a	run-
time	error.	If	you	try	to	create	a	graphics	window,	you	will	get	NULL.

If	you	are	writing	a	C	program,	there	is	an	additional	complication.	A	library	which	does	not	support	graphics	may	not
implement	the	graphics	functions	at	all.	Even	if	you	put	gestalt	tests	around	your	graphics	calls,	you	may	get	link-time
errors.	If	the	glk.h	file	is	so	old	that	it	does	not	declare	the	graphics	functions	and	constants,	you	may	even	get	compile-
time	errors.

To	avoid	this,	you	can	perform	a	preprocessor	test	for	the	existence	of	GLK_MODULE_IMAGE.	If	this	is	defined,	so	are

all	the	functions	and	constants	described	in	this	section.	If	not,	not.

[To	be	extremely	specific,	there	are	two	ways	this	can	happen.	If	the	glk.h	file	that	comes	with	the	library	is	too	old	to
have	the	graphics	declarations	in	it,	it	will	of	course	lack	GLK_MODULE_IMAGE	as	well.	If	the	glk.h	file	is	recent,	but	the
library	is	old,	the	definition	of	GLK_MODULE_IMAGE	should	be	removed	from	glk.h,	to	avoid	link	errors.	This	is	not	a
great	solution.	A	better	one	is	for	the	library	to	implement	the	graphics	functions	as	stubs	that	do	nothing	(or	cause	run-
time	errors).	Since	no	program	will	call	the	stubs	without	testing	gestalt_Graphics,	this	is	sufficient.]

res	=	glk_gestalt(gestalt_DrawImage,	windowtype);

This	returns	1	if	images	can	be	drawn	in	windows	of	the	given	type.	If	it	returns	0,	glk_image_draw()	will	fail	and	return
FALSE	(0).	You	should	test	wintype_Graphics	and	wintype_TextBuffer	separately,	since	libraries	may	implement	both,
neither,	or	only	one.

res	=	glk_gestalt(gestalt_GraphicsTransparency,	0);

This	returns	1	if	images	with	alpha	channels	can	actually	be	drawn	with	the	appropriate	degree	of	transparency.	If	it
returns	0,	the	alpha	channel	is	ignored;	fully	transparent	areas	will	be	drawn	in	an	implementation-defined	color.	[The
JPEG	format	does	not	support	transparency	or	alpha	channels;	the	PNG	format	does.]

res	=	glk_gestalt(gestalt_GraphicsCharInput,	0);

This	returns	1	if	graphics	windows	can	accept	character	input	requests.	If	it	returns	zero,	do	not	call
glk_request_char_event()	or	glk_request_char_event_uni()	on	a	graphics	window.

8.	Sound

As	with	graphics,	so	with	sound.	Sounds,	however,	obviously	don't	appear	in	windows.	To	play	a	sound	in	Glk,	you	must
first	create	a	sound	channel	to	hold	it.	This	is	an	entirely	new	class	of	opaque	objects;	there	are	create	and	destroy	and
iterate	and	get_rock	functions	for	channels,	just	as	there	are	for	windows	and	streams	and	filerefs.

A	channel	can	be	playing	exactly	one	sound	at	a	time.	If	you	want	to	play	more	than	one	sound	simultaneously,	you	need
more	than	one	sound	channel.	On	the	other	hand,	a	single	sound	can	be	played	on	several	channels	at	the	same	time,	or
overlapping	itself.

Sound	is	an	optional	capability	in	Glk.

8.1.	Sound	Resources

As	with	images,	sounds	are	kept	in	resources,	and	your	program	does	not	have	to	worry	about	the	formatting	or	storage.
A	resource	is	referred	to	by	an	integer	identifier.

A	resource	can	theoretically	contain	any	kind	of	sound	data,	of	any	length.	A	resource	can	even	be	infinitely	long.	 [This
would	be	represented	by	some	sound	encoding	with	a	built-in	repeat-forever	flag	–	but	that	is	among	the	details	which
are	hidden	from	you.]	A	resource	can	also	contain	two	or	more	channels	of	sound	(stereo	data).	Do	not	confuse	such	in-
sound	channels	with	Glk	sound	channels.	A	single	Glk	sound	channel	suffices	to	play	any	sound,	even	stereo	sounds.

[Again,	Blorb	is	the	official	resource-storage	format	of	Glk.	Sounds	in	Blorb	files	can	be	encoded	as	Ogg,	AIFF,	or	MOD.
See	the	Blorb	specification	for	details.]

8.2.	Creating	and	Destroying	Sound	Channels

schanid_t	glk_schannel_create(glui32	rock);
schanid_t	glk_schannel_create_ext(glui32	rock,	glui32	volume);

This	creates	a	sound	channel,	about	as	you'd	expect.

Remember	that	it	is	possible	that	the	library	will	be	unable	to	create	a	new	channel,	in	which	case	glk_schannel_create()
will	return	NULL.

When	you	create	a	channel	using	glk_schannel_create(),	it	has	full	volume,	represented	by	the	value	0x10000.	Half
volume	would	be	0x8000,	three-quarters	volume	would	be	0xC000,	and	so	on.	A	volume	of	zero	represents	silence.	The

glk_schannel_create_ext()	call	lets	you	create	a	channel	with	the	volume	already	set	at	a	given	level.

You	can	overdrive	the	volume	of	a	channel	by	setting	a	volume	greater	than	0x10000.	However,	this	is	not	recommended;
the	library	may	be	unable	to	increase	the	volume	past	full,	or	the	sound	may	become	distorted.	You	should	always	create
sound	resources	with	the	maximum	volume	you	will	need,	and	then	reduce	the	volume	when	appropriate	using	the
channel-volume	calls.

[Mathematically,	these	volume	changes	should	be	taken	as	linear	multiplication	of	a	waveform	represented	as	linear
samples.	As	I	understand	it,	linear	PCM	encodes	the	sound	pressure,	and	therefore	a	volume	of	0x8000	should	represent
a	6	dB	drop.]

Not	all	libraries	support	glk_schannel_create_ext().	You	should	test	the	gestalt_Sound2	selector	before	you	rely	on	it;	see
section	8.5,	"Testing	for	Sound	Capabilities".

void	glk_schannel_destroy(schanid_t	chan);

Destroy	the	channel.	If	the	channel	is	playing	a	sound,	the	sound	stops	immediately	(with	no	notification	event).

8.3.	Playing	Sounds

glui32	glk_schannel_play(schanid_t	chan,	glui32	snd)

Begin	playing	the	given	sound	on	the	channel.	If	the	channel	was	already	playing	a	sound	(even	the	same	one),	the	old
sound	is	stopped	(with	no	notification	event).

This	returns	1	if	the	sound	actually	started	playing,	and	0	if	there	was	any	problem.	 [The	most	obvious	problem	is	if
there	is	no	sound	resource	with	the	given	identifier.	But	other	problems	can	occur.	For	example,	the	MOD-playing
facility	in	a	library	might	be	unable	to	handle	two	MODs	at	the	same	time,	in	which	case	playing	a	MOD	resource	would
fail	if	one	was	already	playing.]

glui32	glk_schannel_play_ext(schanid_t	chan,	glui32	snd,	glui32	repeats,	glui32	notify);

This	works	the	same	as	glk_schannel_play(),	but	lets	you	specify	additional	options.	glk_schannel_play(chan,	snd)	is
exactly	equivalent	to	glk_schannel_play_ext(chan,	snd,	1,	0).

The	repeats	value	is	the	number	of	times	the	sound	should	be	repeated.	A	repeat	value	of	-1	(or	rather	0xFFFFFFFF)
means	that	the	sound	should	repeat	forever.	A	repeat	value	of	0	means	that	the	sound	will	not	be	played	at	all;	nothing
happens.	(Although	a	previous	sound	on	the	channel	will	be	stopped,	and	the	function	will	return	1.)

The	notify	value	should	be	nonzero	in	order	to	request	a	sound	notification	event.	If	you	do	this,	when	the	sound	is
completed,	you	will	get	an	event	with	type	evtype_SoundNotify.	The	window	will	be	NULL,	val1	will	be	the	sound's
resource	id,	and	val2	will	be	the	nonzero	value	you	passed	as	notify.

If	you	request	sound	notification,	and	the	repeat	value	is	greater	than	one,	you	will	get	the	event	only	after	the	 last
repetition.	If	the	repeat	value	is	0	or	-1,	you	will	never	get	a	notification	event	at	all.	Similarly,	if	the	sound	is	stopped	or
interrupted,	or	if	the	channel	is	destroyed	while	the	sound	is	playing,	there	will	be	no	notification	event.

Not	all	libraries	support	sound	notification.	You	should	test	the	gestalt_Sound2	selector	before	you	rely	on	it;	see	 section
8.5,	"Testing	for	Sound	Capabilities".

Note	that	you	can	play	a	sound	on	a	channel	whose	volume	is	zero.	This	has	no	audible	result,	unless	you	later	change
the	volume;	but	it	produces	notifications	as	usual.	You	can	also	play	a	sound	on	a	paused	channel;	the	sound	is	paused
immediately,	and	does	not	progress.

glui32	glk_schannel_play_multi(schanid_t	*chanarray,	glui32	chancount,	glui32	*sndarray,	glui32	
soundcount,	glui32	notify);

This	works	the	same	as	glk_schannel_play_ext(),	except	that	you	can	specify	more	than	one	sound.	The	channel
references	and	sound	resource	numbers	are	given	as	two	arrays,	which	must	be	the	same	length.	The	notify	argument
applies	to	all	the	sounds;	the	repeats	value	for	all	the	sounds	is	1.

All	the	sounds	will	begin	at	exactly	the	same	time.

This	returns	the	number	of	sounds	that	began	playing	correctly.	(This	will	be	a	number	from	0	to	soundcount.)

[If	the	notify	argument	is	nonzero,	you	will	get	a	separate	sound	notification	event	as	each	sound	finishes.	They	will	all
have	the	same	val2	value.]

[Note	that	you	have	to	supply	chancount	and	soundcount	as	separate	arguments,	even	though	they	are	required	to	be
the	same.	This	is	an	awkward	consequence	of	the	way	array	arguments	are	dispatched	in	Glulx.]

void	glk_schannel_stop(schanid_t	chan);

Stops	any	sound	playing	in	the	channel.	No	notification	event	is	generated,	even	if	you	requested	one.	If	no	sound	is
playing,	this	has	no	effect.

void	glk_schannel_pause(schanid_t	chan);

Pause	any	sound	playing	in	the	channel.	This	does	not	generate	any	notification	events.	If	the	channel	is	already	paused,
this	does	nothing.

New	sounds	started	in	a	paused	channel	are	paused	immediately.

A	volume	change	in	progress	is	 not	paused,	and	may	proceed	to	completion,	generating	a	notification	if	appropriate.

void	glk_schannel_unpause(schanid_t	chan);

Unpause	the	channel.	Any	paused	sounds	begin	playing	where	they	left	off.	If	the	channel	is	not	already	paused,	this
does	nothing.

[This	means,	for	example,	that	you	can	pause	a	channel	that	is	currently	not	playing	any	sounds.	If	you	then	add	a	sound
to	the	channel,	it	will	not	start	playing;	it	will	be	paused	at	its	beginning.	If	you	later	unpause	the	channel,	the	sound	will
commence.]

void	glk_schannel_set_volume(schanid_t	chan,	glui32	vol);
void	glk_schannel_set_volume_ext(schanid_t	chan,	glui32	vol,	glui32	duration,	glui32	notify);

Sets	the	volume	in	the	channel,	from	0	(silence)	to	0x10000	(full	volume).	Again,	you	can	overdrive	the	volume	by	setting
a	value	greater	than	0x10000,	but	this	is	not	recommended.

If	the	duration	is	zero,	the	change	is	immediate.	Otherwise,	the	change	begins	immediately,	and	occurs	smoothly	over
the	next	duration	milliseconds.

The	notify	value	should	be	nonzero	in	order	to	request	a	volume	notification	event.	If	you	do	this,	when	the	volume
change	is	completed,	you	will	get	an	event	with	type	evtype_VolumeNotify.	The	window	will	be	NULL,	val1	will	be	zero,
and	val2	will	be	the	nonzero	value	you	passed	as	notify.

The	glk_schannel_set_volume()	does	not	include	duration	and	notify	values.	Both	are	assumed	to	be	zero:	immediate
change,	no	notification.

You	can	call	these	functions	between	sounds,	or	while	a	sound	is	playing.	However,	a	zero-duration	change	while	a
sound	is	playing	may	produce	unpleasant	clicks.

At	most	one	volume	change	can	be	occurring	on	a	sound	channel	at	any	time.	If	you	call	one	of	these	functions	while	a
previous	volume	change	is	in	progress,	the	previous	change	is	interrupted.	The	beginning	point	of	the	new	volume
change	should	be	wherever	the	previous	volume	change	was	interrupted	(rather	than	the	previous	change's	beginning
or	ending	point).

Not	all	libraries	support	thse	functions.	You	should	test	the	appropriate	gestalt	selectors	before	you	rely	on	them;	see
section	8.5,	"Testing	for	Sound	Capabilities".

void	glk_sound_load_hint(glui32	snd,	glui32	flag);

This	gives	the	library	a	hint	about	whether	the	given	sound	should	be	loaded	or	not.	If	the	flag	is	nonzero,	the	library
may	preload	the	sound	or	do	other	initialization,	so	that	glk_schannel_play()	will	be	faster.	If	the	flag	is	zero,	the	library
may	release	memory	or	other	resources	associated	with	the	sound.	Calling	this	function	is	always	optional,	and	it	has	no
effect	on	what	the	library	actually	plays.

8.4.	Other	Sound	Channel	Functions

schanid_t	glk_schannel_iterate(schanid_t	chan,	glui32	*rockptr);

This	function	can	be	used	to	iterate	through	the	list	of	all	open	channels.	See	 section	1.6.2,	"Iterating	Through	Opaque
Objects".

As	that	section	describes,	the	order	in	which	channels	are	returned	is	arbitrary.

glui32	glk_schannel_get_rock(schanid_t	chan);

This	retrieves	the	channel's	rock	value.	See	 section	1.6.1,	"Rocks".

8.5.	Testing	for	Sound	Capabilities

Before	calling	Glk	sound	functions,	you	should	use	the	following	gestalt	selectors.

glui32	res;
res	=	glk_gestalt(gestalt_Sound2,	0);

This	returns	1	if	the	overall	suite	of	sound	functions	is	available.	This	includes	all	the	functions	defined	in	this	chapter.
It	also	includes	the	capabilities	described	below	under	gestalt_SoundMusic,	gestalt_SoundVolume,	and
gestalt_SoundNotify.

If	you	are	writing	a	C	program,	there	is	an	additional	complication.	A	library	which	does	not	support	sound	may	not
implement	the	sound	functions	at	all.	Even	if	you	put	gestalt	tests	around	your	sound	calls,	you	may	get	link-time	errors.
If	the	glk.h	file	is	so	old	that	it	does	not	declare	the	sound	functions	and	constants,	you	may	even	get	compile-time
errors.

To	avoid	this,	you	can	perform	a	preprocessor	test	for	the	existence	of	GLK_MODULE_SOUND2.	If	this	is	defined,	so	are
all	the	functions	and	constants	described	in	this	section.	If	not,	not.

Earlier	versions	of	the	Glk	spec	defined	separate	selectors	for	various	optional	capabilities.	This	has	proven	to	be	an
unnecessarily	confusing	strategy,	and	is	no	longer	used.	The	following	selectors	still	exist,	but	you	should	not	need	to
test	them;	the	gestalt_Sound2	selector	covers	all	of	them.

res	=	glk_gestalt(gestalt_Sound,	0);

This	returns	1	if	the	older	(pre-0.7.3)	suite	of	sound	functions	is	available.	This	includes	glk_schannel_create(),
glk_schannel_destroy(),	glk_schannel_iterate(),	glk_schannel_get_rock(),	glk_schannel_play(),	glk_schannel_play_ext(),
glk_schannel_stop(),	glk_schannel_set_volume(),	and	glk_sound_load_hint().

If	this	selector	returns	0,	you	should	not	try	to	call	these	functions.	They	may	have	no	effect,	or	they	may	cause	a	run-
time	error.

This	selector	is	guaranteed	to	return	1	if	gestalt_Sound2	does.

You	can	perform	a	preprocessor	test	for	the	existence	of	GLK_MODULE_SOUND.	If	this	is	defined,	so	are	the	functions
listed	above.

res	=	glk_gestalt(gestalt_SoundMusic,	0);

This	returns	1	if	the	library	is	capable	of	playing	music	sound	resources.	If	it	returns	0,	only	sampled	sounds	can	be
played.["Music	sound	resources"	means	MOD	songs	–	the	only	music	format	that	Blorb	currently	supports.	The	presence
of	this	selector	is,	of	course,	an	ugly	hack.	It	is	a	concession	to	the	current	state	of	the	Glk	libraries,	some	of	which	can
handle	AIFF	but	not	MOD	sounds.]

This	selector	is	guaranteed	to	return	1	if	gestalt_Sound2	does.

res	=	glk_gestalt(gestalt_SoundVolume,	0);

This	selector	returns	1	if	the	glk_schannel_set_volume()	function	works.	If	it	returns	zero,	glk_schannel_set_volume()
has	no	effect.

This	selector	is	guaranteed	to	return	1	if	gestalt_Sound2	does.

res	=	glk_gestalt(gestalt_SoundNotify,	0);

This	selector	returns	1	if	the	library	supports	sound	notification	events.	If	it	returns	zero,	you	will	never	get	such	events.

This	selector	is	guaranteed	to	return	1	if	gestalt_Sound2	does.

9.	Hyperlinks

Some	games	may	wish	to	mark	up	the	text	in	their	windows	with	hyperlinks,	which	can	be	selected	by	the	player	–	most
likely	by	mouse	click.	Glk	allows	this	in	a	manner	similar	to	the	way	text	styles	are	set.

Hyperlinks	are	an	optional	capability	in	Glk.

9.1.	Creating	Hyperlinks

void	glk_set_hyperlink(glui32	linkval);
void	glk_set_hyperlink_stream(strid_t	str,	glui32	linkval);

These	calls	set	the	current	link	value	in	the	current	output	stream,	or	the	specified	output	stream,	respectively.	A	link
value	is	any	non-zero	integer;	zero	indicates	no	link.	Subsequent	text	output	is	considered	to	make	up	the	body	of	the
link,	which	continues	until	the	link	value	is	changed	(or	set	to	zero).

Note	that	it	is	almost	certainly	useless	to	change	the	link	value	of	a	stream	twice	with	no	intervening	text.	The	result	will
be	a	zero-length	link,	which	the	player	probably	cannot	see	or	select;	the	library	may	optimize	it	out	entirely.

Setting	the	link	value	of	a	stream	to	the	value	it	already	has,	has	no	effect.

If	the	library	supports	images,	they	take	on	the	current	link	value	as	they	are	output,	just	as	text	does.	The	player	can
select	an	image	in	a	link	just	as	he	does	text.	(This	includes	margin-aligned	images,	which	can	lead	to	some	peculiar
situations,	since	a	right-margin	image	may	not	appear	directly	adjacent	to	the	text	it	was	output	with.)

The	library	will	attempt	to	display	links	in	some	distinctive	way	(and	it	will	do	this	whether	or	not	hyperlink	input	has
actually	been	requested	for	the	window).	Naturally,	blue	underlined	text	is	most	likely.	Link	images	may	not	be
distinguished	from	non-link	images,	so	it	is	best	not	to	use	a	particular	image	both	ways.

9.2.	Accepting	Hyperlink	Events

void	glk_request_hyperlink_event(winid_t	win);
void	glk_cancel_hyperlink_event(winid_t	win);

These	calls	works	like	the	other	event	request	calls.	A	pending	request	on	a	window	remains	pending	until	the	player
selects	a	link,	or	the	request	is	cancelled.

A	window	can	have	hyperlink	input	and	mouse,	character,	or	line	input	pending	at	the	same	time.	However,	if	hyperlink
and	mouse	input	are	requested	at	the	same	time,	the	library	may	not	provide	an	intuitive	way	for	the	player	to	distingish
which	a	mouse	click	represents.	Therefore,	this	combination	should	be	avoided.

When	a	link	is	selected	in	a	window	with	a	pending	request,	glk_select()	will	return	an	event	of	type	evtype_Hyperlink.
In	the	event	structure,	win	tells	what	window	the	event	came	from,	and	val1	gives	the	(non-zero)	link	value.

If	no	hyperlink	request	is	pending	in	a	window,	the	library	will	ignore	attempts	to	select	a	link.	No	evtype_Hyperlink
event	will	be	generated	unless	it	has	been	requested.

9.3.	Testing	for	Hyperlink	Capabilities

Before	calling	Glk	hyperlink	functions,	you	should	use	the	following	gestalt	selectors.

glui32	res;
res	=	glk_gestalt(gestalt_Hyperlinks,	0);

This	returns	1	if	the	overall	suite	of	hyperlinks	functions	is	available.	This	includes	glk_set_hyperlink(),
glk_set_hyperlink_stream(),	glk_request_hyperlink_event(),	glk_cancel_hyperlink_event().

If	this	selector	returns	0,	you	should	not	try	to	call	these	functions.	They	may	have	no	effect,	or	they	may	cause	a	run-
time	error.

You	can	test	whether	hyperlinks	are	supported	with	the	gestalt_HyperlinkInput	selector.

res	=	glk_gestalt(gestalt_HyperlinkInput,	windowtype);

This	will	return	TRUE	(1)	if	windows	of	the	given	type	support	hyperlinks.	If	this	returns	FALSE	(0),	it	is	still	legal	to	call
glk_set_hyperlink()	and	glk_request_hyperlink_event(),	but	they	will	have	no	effect,	and	you	will	never	get	hyperlink
events.

If	you	are	writing	a	C	program,	you	can	perform	a	preprocessor	test	for	the	existence	of	GLK_MODULE_HYPERLINKS.	If
this	is	defined,	so	are	all	the	functions	and	constants	described	in	this	section.	If	not,	not.

10.	The	System	Clock

You	can	get	the	current	time,	either	as	a	Unix	timestamp	(seconds	since	1970)	or	as	a	broken-out	structure	of	time
elements	(year,	month,	day,	hour,	minute,	second).

The	system	clock	is	not	guaranteed	to	line	up	with	timer	events	(see	 section	4.4,	"Timer	Events").	Timer	events	may	be
delivered	late	according	to	the	system	clock.

void	glk_current_time(glktimeval_t	*time);

typedef	struct	glktimeval_struct	{
				glsi32	high_sec;
				glui32	low_sec;
				glsi32	microsec;
}	glktimeval_t;

The	current	Unix	time	is	stored	in	the	structure.	(The	argument	may	not	be	NULL.)	This	is	the	number	of	seconds	since
the	beginning	of	1970	(UTC).

The	first	two	values	in	the	structure	should	be	considered	a	single	 signed	64-bit	number.	This	allows	the	glktimeval_t	to
store	a	reasonable	range	of	values	in	the	future	and	past.	The	high_sec	value	will	remain	zero	until	sometime	in	2106.	If
your	computer	is	running	in	1969,	perhaps	due	to	an	unexpected	solar	flare,	then	high_sec	will	be	negative.

The	third	value	in	the	structure	represents	a	fraction	of	a	second,	in	microseconds	(from	0	to	999999).	The	resolution	of
the	glk_current_time()	call	is	platform-dependent;	the	microsec	value	may	not	be	updated	continuously.

glsi32	glk_current_simple_time(glui32	factor);

If	dealing	with	64-bit	values	is	awkward,	you	can	also	get	the	current	time	as	a	lower-resolution	32-bit	value.	This	is
simply	the	Unix	time	divided	by	the	factor	argument	(which	must	not	be	zero).	For	example,	if	factor	is	60,	the	result	will
be	the	number	of	minutes	since	1970	(rounded	towards	negative	infinity).	If	factor	is	1,	you	will	get	the	Unix	time
directly,	but	the	value	will	be	truncated	starting	some	time	in	2038.

10.1.	Time	and	Date	Conversions

void	glk_time_to_date_utc(glktimeval_t	*time,	glkdate_t	*date);
void	glk_time_to_date_local(glktimeval_t	*time,	glkdate_t	*date);

typedef	struct	glkdate_struct	{
				glsi32	year;					/*	full	(four-digit)	year	*/
				glsi32	month;				/*	1-12,	1	is	January	*/
				glsi32	day;						/*	1-31	*/
				glsi32	weekday;		/*	0-6,	0	is	Sunday	*/
				glsi32	hour;					/*	0-23	*/
				glsi32	minute;			/*	0-59	*/
				glsi32	second;			/*	0-59,	maybe	60	during	a	leap	second	*/
				glsi32	microsec;	/*	0-999999	*/
}	glkdate_t;

Convert	the	given	timestamp	(as	returned	by	glk_current_time())	to	a	broken-out	structure.	The	"utc"	function	returns	a

date	and	time	in	universal	time	(GMT);	the	"local"	function	returns	local	time.

[The	seconds	value	may	be	60	because	of	a	leap	second.]

void	glk_simple_time_to_date_utc(glsi32	time,	glui32	factor,	glkdate_t	*date);
void	glk_simple_time_to_date_local(glsi32	time,	glui32	factor,	glkdate_t	*date);

Convert	the	given	timestamp	(as	returned	by	glk_current_simple_time())	to	a	broken-out	structure	in	universal	or	local
time.	The	time	argument	is	multiplied	by	factor	to	produce	a	Unix	timestamp.

Since	the	resolution	of	these	functions	is	no	better	than	seconds,	they	will	return	zero	for	the	microseconds	value.

void	glk_date_to_time_utc(glkdate_t	*date,	glktimeval_t	*time);
void	glk_date_to_time_local(glkdate_t	*date,	glktimeval_t	*time);

Convert	the	broken-out	structure	(interpreted	as	universal	or	local	time)	to	a	timestamp.	The	weekday	value	in	glkdate_t
is	ignored.	The	other	values	need	not	be	in	their	normal	ranges;	they	will	be	normalized.

If	the	time	cannot	be	represented	by	the	platform's	time	library,	this	may	return	-1	for	the	seconds	value.	(I.e.,	the
high_sec	and	low_sec	fields	both	$FFFFFFFF.	The	microseconds	field	is	undefined	in	this	case.)

The	glk_date_to_time_local()	function	may	not	be	smart	about	Daylight	Saving	Time	conversions.	 [If	implemented	with
the	mktime()	libc	function,	it	should	use	the	negative	tm_isdst	flag	to	"attempt	to	divine	whether	summer	time	is	in
effect".]

glsi32	glk_date_to_simple_time_utc(glkdate_t	*date,	glui32	factor);
glsi32	glk_date_to_simple_time_local(glkdate_t	*date,	glui32	factor);

Convert	the	broken-out	structure	(interpreted	as	universal	or	local	time)	to	a	timestamp	divided	by	factor.	The	weekday
value	in	glkdate_t	is	ignored.	The	other	values	need	not	be	in	their	normal	ranges;	they	will	be	normalized.

If	the	time	cannot	be	represented	by	the	platform's	time	library,	this	may	return	-1.

10.2.	Testing	for	Clock	Capabilities

Before	calling	Glk	date	and	time	functions,	you	should	use	the	following	gestalt	selector.

res	=	glk_gestalt(gestalt_DateTime,	0);

This	returns	1	if	the	overall	suite	of	system	clock	functions,	as	described	in	this	chapter,	is	available.

If	this	selector	returns	0,	you	should	not	try	to	call	these	functions.	They	may	have	no	effect,	or	they	may	cause	a	run-
time	error.

[Glk	timer	events	are	covered	by	a	different	selector.	See	 section	4.4,	"Timer	Events").]

If	you	are	writing	a	C	program,	you	can	perform	a	preprocessor	test	for	the	existence	of	GLK_MODULE_DATETIME.	If
this	is	defined,	so	are	all	the	functions	and	data	types	described	in	this	section.

11.	Porting,	Adapting,	and	Other	Messy	Bits

Life	is	not	perfect,	and	neither	are	our	toys.	In	a	world	of	perfect	toys,	a	Glk	program	could	compile	with	any	Glk	library
and	run	without	human	intervention.	Guess	what.

11.1.	Startup	Options

One	large	grey	area	is	starting	up,	startup	files,	and	other	program	options.	It	is	easy	to	assume	that	all	C	programs	run
with	the	(argc,	argv)	model	–	that	all	the	information	they	need	comes	as	an	array	of	strings	at	startup	time.	This	is
sometimes	true.	But	in	a	GUI	system,	files	are	often	opened	by	clicking,	options	are	specified	in	dialog	boxes,	and	so	on;
and	this	does	not	necessarily	happen	at	the	beginning	of	main().

Therefore,	Glk	does	not	try	to	pass	an	(argc,	argv)	list	to	your	glk_main().	Nor	does	it	provide	a	portable	API	for	startup
files	and	options.	[Doing	that	well	would	require	API	calls	to	parse	command-line	arguments	of	various	types,	and	then

also	design	and	handle	dialog	boxes.	It	would	go	far	beyond	the	level	of	complexity	which	Glk	aspires	to.]

Instead,	startup	files	and	options	are	handled	in	an	 entirely	platform-dependent	manner.	You,	as	the	author	of	a	Glk
program,	must	describe	how	your	program	should	behave.	As	your	program	is	ported	to	various	Glk	libraries,	each
porter	must	decide	how	to	implement	that	behavior	on	the	platform	in	question.	The	library	should	store	the	options
and	files	in	global	variables,	where	your	glk_main()	routine	can	read	them.

It	is	reasonable	to	modularize	this	code,	and	call	it	the	"startup	code".	But	the	startup	code	is	not	necessarily	a	single
function,	and	it	certainly	does	not	have	well-defined	arguments	such	as	an	(argc,	argv)	list.	You	can	consider	that	your
startup	behavior	is	divided	into	the	messy	part,	which	is	nonportable	and	goes	in	the	startup	code,	and	the	clean	part,
which	is	entirely	Glk-portable	and	goes	at	the	beginning	of	glk_main().

This	is	not	as	much	of	a	mess	as	it	sounds.	Many	programs,	and	almost	all	IF	programs,	follow	one	of	a	few	simple
models.

·		The	simple	model:	There	are	no	startup	files.	The	program	just	starts	running	when	invoked.
·		The	game-file	model:	The	program	begins	running	when	it	is	handed	a	single	file	of	a	particular	type.	On	command-

line	systems,	this	comes	as	a	filename	in	a	command-line	option.	On	GUI	systems,	it	will	usually	be	a	platform-native
event	which	contains	a	file	reference.

Any	Glk	library	will	be	able	to	support	these	two	models,	probably	through	compile-time	options.	The	details	will	vary.
[For	one	notable	case,	the	Mac	Glk	library	has	two	possible	behaviors	when	compiled	with	the	game-file	model.	If	the
player	double-clicks	a	game	file,	the	library	calls	glk_main()	immediately.	If	the	player	double-clicks	the	application
icon,	the	library	allows	the	player	to	wait,	perhaps	adjusting	preferences;	it	only	calls	glk_main()	after	the	game	file	is
selected	through	a	file	dialog.]

[In	fact,	if	life	were	this	simple,	it	would	be	worth	adding	these	models	to	the	Glk	API	somehow.	Unfortunately,	it's	not.
Consider	AGT:	the	"game	file"	is	actually	about	ten	separate	files	with	related	filenames,	in	the	same	directory.	Glk	does
not	contain	API	calls	to	do	precise	file	and	pathname	manipulation;	it	is	too	complicated	an	area	to	support.	So	this
situation	must	be	handled	non-portably.]

More	complicated	models	are	also	possible.	You	might	want	to	accept	files	through	GUI	events	at	any	time,	not	just	at
startup.	This	could	be	handled	by	defining	a	new	Glk	event	type,	and	having	the	library	send	such	an	event	when	a
platform-native	icon-click	is	detected.	You	would	then	have	to	decide	how	the	situation	should	be	handled	in	a
command-line	Glk	library.	But	that	is	inherent	in	your	task	as	a	program	author.

Options	and	preferences	are	a	separate	problem.	Most	often,	a	command-line	library	will	handle	them	with	command-
line	arguments,	and	a	GUI	library	will	handle	them	with	a	dialog	box.	Ideally,	you	should	describe	how	both	cases
should	behave	–	list	the	command-line	arguments,	and	perhaps	how	they	could	be	labelled	in	a	dialog.	[This	is	unlikely
to	be	very	complicated.	Although	who	knows.]

Remember	that	the	Glk	library	is	likely	to	have	some	options	of	its	own	–	matters	of	display	styles	and	so	on.	A
command-line	library	will	probably	have	a	simple	API	to	extract	its	own	options	and	pass	the	rest	on	to	the	startup	code.

11.2.	Going	Outside	the	Glk	API

Nonportable	problems	are	not	limited	to	the	start	of	execution.	There	is	also	the	question	of	OS	services	which	are	not
represented	in	Glk.	The	ANSI	C	libraries	are	so	familiar	that	they	seem	universal,	but	they	are	actually	not	necessarily
present.	Palmtop	platforms	such	as	PalmOS	are	particularly	good	at	leaving	out	ANSI	libraries.

11.2.1.	Memory	Management

Everyone	uses	malloc(),	realloc(),	and	free().	However,	some	platforms	have	a	native	memory-management	API	which
may	be	more	suitable	in	porting	your	program.

The	malloc()	system	is	simple;	it	can	probably	be	implemented	as	a	layer	on	top	of	whatever	native	API	is	available.	So
you	don't	absolutely	have	to	worry	about	this.	However,	it	can't	hurt	to	group	all	your	malloc()	and	free()	calls	in	one	part
of	your	program,	so	that	a	porter	can	easily	change	them	all	if	it	turns	out	to	be	a	good	idea.

11.2.2.	String	Manipulation

This	is	more	of	a	nuisance,	because	the	set	of	string	functions	varies	quite	a	bit	between	platforms.	Consider	bcopy(),
memcpy(),	and	memmove();	stricmp()	and	strcasecmp();	strchr()	and	index();	and	so	on.	And	again,	on	a	palmtop

machine,	none	of	these	may	be	available.	The	maximally	safe	course	is	to	implement	what	you	need	yourself.	[See	the
model.c	program	for	an	example;	it	implements	its	own	str_eq()	and	str_len().]

The	maximally	safe	course	is	also	a	pain	in	the	butt,	and	may	well	be	inefficient	(a	platform	may	have	a	memcpy()	which
is	highly	optimized	for	large	moves.)	That's	porting	in	the	big	city.

[By	the	way,	the	next	person	I	see	who	#defines	memmove()	as	memcpy()	when	a	real	memmove()	isn't	available,	gets
slapped	in	the	face	with	a	lead-lined	rubber	salmon.]

11.2.3.	File	Handling

This	is	the	real	nuisance,	because	Glk	provides	a	limited	set	of	stream	and	file	functions.	And	yet	there	are	all	these
beautiful	ANSI	stdio	calls,	which	have	all	these	clever	tricks	–	ungetc(),	fast	macro	fgetc(),	formatted	fprintf(),	not	to
mention	the	joys	of	direct	pathname	manipulation.	Why	bother	with	the	Glk	calls?

The	problem	is,	the	stdio	library	really	isn't	always	the	best	choice,	particularly	on	mobile	OSes.

There's	also	the	problem	of	hooking	into	the	Glk	API.	Window	output	goes	through	Glk	streams.	 [It	would	have	been
lovely	to	use	the	stdio	API	for	that,	but	it's	not	generally	possible.]

As	usual,	it's	a	judgement	call.	If	you	have	a	large	existing	pile	of	source	code	which	you're	porting,	and	it	uses	a	lot	of
icky	stdio	features	like	ungetc(),	it	may	be	better	not	to	bother	changing	everything	to	the	Glk	file	API.	If	you're	starting
from	scratch,	using	the	Glk	calls	will	probably	be	cleaner.

11.2.4.	Private	Extensions	to	Glk

Sometimes	–	hopefully	rarely	–	there's	stuff	you	just	gotta	do.

Explicit	pathname	modification	is	one	possible	case.	Creating	or	deleting	directories.	New	Glk	event	types	caused	by
interface	events.	Control	over	pull-down	menus.

Like	startup	code,	you	just	have	to	decide	what	you	want,	and	ask	your	porters	to	port	it.	These	are	the	non-portable
parts	of	your	task.	As	I	said,	that's	porting	in	the	big	city.

If	an	extension	or	new	function	is	so	useful	that	everyone	is	implementing	it,	I'll	consider	adding	it	to	the	Glk	API	(as	an
optional	capability,	with	a	Gestalt	selector	and	everything.)	I'm	flexible.	In	a	morally	correct	manner,	of	course.

11.3.	Glk	and	the	Virtual	Machine

Most	IF	games	are	built	on	a	virtual	machine,	such	as	the	Z-machine	or	the	TADS	runtime	structure.	Building	a	virtual
machine	which	uses	Glk	as	its	interface	is	somewhat	more	complicated	than	writing	a	single	Glk	program.

The	question	to	ask	is:	what	API	will	be	exported	to	the	game	author	–	the	person	writing	a	program	to	run	on	the	VM?

11.3.1.	Implementing	a	Higher	Layer	Over	Glk

Thus	far,	each	virtual	machine	has	had	its	own	built-in	I/O	API.	Most	of	them	have	identical	basic	capabilities	–	read
lines	of	input,	display	a	stream	of	output,	show	a	status	line	of	some	sort,	and	so	on.	This	commonality,	of	course,	is	the
ground	from	which	Glk	sprouted	in	the	first	place.

If	the	I/O	API	is	a	subset	of	the	capabilities	of	Glk,	it	can	be	implemented	as	a	layer	on	top	of	Glk.	In	this	way,	an	existing
VM	can	often	be	ported	to	Glk	without	any	change	visible	to	the	author.	Standard	TADS	can	be	ported	in	this	way;	the
V5/8	Z-machine	can	as	well	(with	the	sole	exception,	as	far	as	I	know,	of	colored	text.)

11.3.2.	Glk	as	a	VM's	Native	API

The	other	approach	is	to	use	Glk	as	the	virtual	machine's	own	I/O	API,	and	provide	it	directly	to	the	game	author.	The
Glulx	virtual	machine	is	built	this	way.	This	is	inherently	more	powerful,	since	it	allows	access	to	all	of	Glk,	instead	of	a
subset.	As	Glk	is	designed	to	be	easily	expandable,	and	will	gain	new	(optional)	capabilities	over	time,	this	approach	also
allows	a	VM	to	gain	capabilities	over	time	without	much	upheaval.

[To	a	certain	extent,	Glk	was	designed	for	this	use	more	than	any	other.	For	example,	this	is	why	all	Glk	function
arguments	are	either	pointers	or	32-bit	integers,	and	why	all	Glk	API	structures	are	effectively	arrays	of	same.	It	is	also
why	the	iterator	functions	exist;	a	VM's	entire	memory	space	may	be	reset	by	an	"undo"	or	"restore"	command,	and	it

would	then	have	to,	ah,	take	inventory	of	its	streams	and	windows	and	filerefs.]

[This	is	also	another	reason	why	Glk	provides	file	API	calls.	A	VM	can	provide	Glk	as	the	game	author's	entire	access	to
the	file	system,	as	well	as	the	author's	entire	access	to	the	display	system.	The	VM	will	then	be	simpler,	more	modular,
not	as	tied	into	the	native	OS	–	all	that	good	stuff.]

[The	Society	of	C	Pedants	wishes	me	to	point	out	that	the	structures	in	the	Glk	API	aren't	 really	arrays	of	32-bit	integers.
A	structure	made	up	entirely	of	32-bit	integers	can	still	be	padded	weirdly	by	a	C	compiler.	This	problem	is	solved
cleanly	by	the	dispatch	layer;	see	below.]

The	mechanics	of	this	are	tricky,	because	Glk	has	many	API	calls,	and	more	will	be	added	over	time.

In	a	VM	with	a	limited	number	of	opcodes,	it	may	be	best	to	allocate	a	single	"Glk"	opcode,	with	a	variable	number	of
arguments,	the	first	of	which	is	a	function	selector.	(Glulx	does	this.)	Allow	at	least	16	bits	for	this	selector;	there	may	be
more	than	256	Glk	calls	someday.	(For	a	list	of	standard	selectors	for	Glk	calls,	see	section	12.1.6,	"Table	of	Selectors".)

In	a	VM	with	a	large	opcode	space,	you	could	reserve	a	16-bit	range	of	opcodes	for	Glk.

It	may	also	be	feasible	to	extend	the	function-call	mechanism	in	some	way,	to	include	the	range	of	Glk	functions.

In	any	case,	the	API	still	has	to	be	exported	to	the	game	author	in	whatever	language	is	compiled	to	the	VM.	Ideally,	this
can	be	done	as	a	set	of	function	calls.	[But	it	doesn't	have	to	be.	The	Inform	compiler,	for	example,	can	accept	assembly
opcodes	in-line	with	Inform	source	code.	It's	nearly	as	convenient	to	let	the	author	type	in	opcodes	as	function	calls.]

There	is	a	further	complication	when	new	calls	are	added	to	Glk.	This	should	not	be	a	major	problem.	The	compiler	is
mapping	Glk	calls	one-to-one	to	its	own	functions	or	opcodes,	so	this	should	be	a	matter	of	adding	to	a	fixed	list
somewhere	in	the	compiler	and	releasing	an	upgrade.

Alternatively,	if	the	compiler	has	some	way	to	define	new	opcodes,	even	this	much	effort	is	not	necessary.	 [The	Inform
compiler	is	designed	this	way;	the	game	author	can	define	new	opcodes	and	use	them.	So	if	a	new	call	has	been	added	to
Glk,	and	it	has	been	implemented	in	the	interpreter	with	a	known	selector,	it	can	be	used	in	Inform	immediately,
without	a	compiler	upgrade.]

Or,	you	can	provide	a	completely	dynamic	interface	to	the	Glk	API.	This	is	the	province	of	the	Glk	dispatch	layer,	which
is	not	part	of	Glk	proper;	it	rests	on	top.	See	section	12.1,	"The	Dispatch	Layer".

12.	Appendices

12.1.	The	Dispatch	Layer

The	material	described	in	this	section	is	not	part	of	the	Glk	API	per	se.	It	is	an	external	layer,	lying	on	top	of	Glk,	which
allows	a	program	to	invoke	Glk	dynamically	–	determining	the	capabilities	and	interfaces	of	Glk	at	run-time.

This	is	most	useful	for	virtual	machines	and	other	run-time	systems,	which	want	to	use	Glk	without	being	bound	to	a
particular	version	of	the	Glk	API.	In	other	words,	a	VM	can	export	Glk	to	VM	programs,	without	hard-wiring	a	list	of	Glk
functions	within	itself.	If	a	new	Glk	library	is	released,	with	new	functions,	the	VM	can	simply	link	in	the	library;	the
new	functions	will	be	available	to	VM	programs	without	further	work.

If	you	are	writing	a	C	program	which	uses	the	Glk	API,	you	can	ignore	this	section	entirely.	If	you	are	writing	a	VM
which	uses	Glk,	you	need	to	read	it.	If	you	are	implementing	a	Glk	library,	you	should	also	read	it.	(There	are	some
additional	interfaces	which	your	library	must	support	for	the	dispatch	layer	to	work	right.)

12.1.1.	How	This	Works

The	dispatch	layer	is	implemented	in	a	C	source	file,	gi_dispa.c,	and	its	header,	gi_dispa.h.	This	code	is	platform-
independent	–	it	is	identical	in	every	library,	just	as	the	glk.h	header	file	is	identical	in	every	library.	Each	library	author
should	download	the	gi_dispa.c	and	gi_dispa.h	files	from	the	Glk	web	site,	and	compile	them	unchanged	into	the
library.

This	code	is	mostly	external	to	Glk;	it	operates	by	calling	the	documented	Glk	API,	not	library	internals.	This	is	how
gi_dispa.c	can	be	platform-independent.	However,	the	dividing	line	is	not	perfect.	There	are	a	few	extra	functions,	not
part	of	the	Glk	API,	which	the	library	must	implement;	gi_dispa.c	(and	no	one	else)	calls	these	functions.	These
functions	are	simple	and	should	not	make	life	much	harder	for	library	implementors.

The	dispatch	layer	then	provides	a	dispatch	API.	The	heart	of	this	is	the	gidispatch_call()	function,	which	allows	you	to
call	any	Glk	function	(specified	by	number)	and	pass	in	a	list	of	arguments	in	a	standardized	way.	You	may	also	make
use	of	gidispatch_prototype(),	which	gives	you	the	proper	format	of	that	list	for	each	function.	Ancilliary	functions	let
you	enumerate	the	functions	and	constants	in	the	Glk	API.

12.1.2.	Interrogating	the	Interface

These	are	the	ancilliary	functions	that	let	you	enumerate.

glui32	gidispatch_count_classes(void);

This	returns	the	number	of	opaque	object	classes	used	by	the	library.	You	will	need	to	know	this	if	you	want	to	keep
track	of	opaque	objects	as	they	are	created;	see	section	12.1.5.1,	"Opaque	Object	Registry".

As	of	Glk	API	0.6.0,	there	are	four	classes:	windows,	streams,	filerefs,	and	sound	channels	(numbered	0,	1,	2,	and	3
respectively.)

glui32	gidispatch_count_intconst(void);

This	returns	the	number	of	integer	constants	exported	by	the	library.

gidispatch_intconst_t	*gidispatch_get_intconst(glui32	index);

typedef	struct	gidispatch_intconst_struct	{
				char	*name;
				glui32	val;
}	gidispatch_intconst_t;

This	returns	a	structure	describing	an	integer	constant	which	the	library	exports.	These	are,	roughly,	all	the	constants
defined	in	the	glk.h	file.	index	can	range	from	0	to	N-1,	where	N	is	the	value	returned	by	gidispatch_count_intconst().

The	structure	simply	contains	a	string	and	a	value.	The	string	is	a	symbolic	name	of	the	value,	and	can	be	re-exported	to
anyone	interested	in	using	Glk	constants.

[In	the	current	gi_dispa.c	library,	these	structures	are	static	and	immutable,	and	will	never	be	deallocated.	However,	it
is	safer	to	assume	that	the	structure	may	be	reused	in	future	gidispatch_get_intconst()	calls.]

glui32	gidispatch_count_functions(void);

This	returns	the	number	of	functions	exported	by	the	library.

gidispatch_function_t	*gidispatch_get_function(glui32	index);

typedef	struct	gidispatch_function_struct	{
				glui32	id;
				void	*fnptr;
				char	*name;
}	gidispatch_function_t;

This	returns	a	structure	describing	a	Glk	function.	index	can	range	from	0	to	N-1,	where	N	is	the	value	returned	by
gidispatch_count_functions().

The	id	field	is	a	selector	–	a	numeric	constant	used	to	refer	to	the	function	in	question.	name	is	the	function	name,	as	it
is	given	in	the	glk.h	file,	but	without	the	"glk_"	prefix.	And	fnptr	is	the	address	of	the	function	itself.	[This	is	included
because	it	might	be	useful,	but	it	is	not	recommended.	To	call	an	arbitrary	Glk	function,	you	should	use
gidispatch_call().]	See	section	12.1.6,	"Table	of	Selectors"	for	the	selector	definitions.	See	 section	12.1.3,	"Dispatching"	for
more	about	calling	Glk	functions	by	selector.

gidispatch_function_t	*gidispatch_get_function_by_id(glui32	id);

This	returns	a	structure	describing	the	Glk	function	with	selector	id.	If	there	is	no	such	function	in	the	library,	this
returns	NULL.

[Again,	it	is	safest	to	assume	that	the	structure	is	only	valid	until	the	next	gidispatch_get_function()	or

gidispatch_get_function_by_id()	call.]

12.1.3.	Dispatching

void	gidispatch_call(glui32	funcnum,	glui32	numargs,	gluniversal_t	*arglist);

funcnum	is	the	function	number	to	invoke;	see	 section	12.1.6,	"Table	of	Selectors".	arglist	is	the	list	of	arguments,	and
numargs	is	the	length	of	the	list.

The	arguments	are	all	stored	as	gluniversal_t	objects.	This	is	a	union,	encompassing	all	the	types	that	can	be	passed	to
Glk	functions.

typedef	union	gluniversal_union	{
				glui32	uint;
				glsi32	sint;
				void	*opaqueref;
				unsigned	char	uch;
				signed	char	sch;
				char	ch;
				char	*charstr;
				void	*array;
				glui32	ptrflag;
}	gluniversal_t;

12.1.3.1.	Basic	Types

Numeric	arguments	are	passed	in	the	obvious	way	–	one	argument	per	gluniversal_t,	with	the	uint	or	sint	field	set	to	the
numeric	value.	Characters	and	strings	are	also	passed	in	this	way	–	chars	in	the	uch,	sch,	or	ch	fields	(depending	on
whether	the	char	is	signed)	and	strings	in	the	charstr	field.	Opaque	objects	(windows,	streams,	etc)	are	passed	in	the
opaqueref	field	(which	is	void*,	in	order	to	handle	all	opaque	pointer	types.)

However,	pointers	(other	than	C	strings),	arrays,	and	structures	complicate	life.	So	do	return	values.

12.1.3.2.	References

A	reference	to	a	numeric	type	or	object	reference	–	that	is,	glui32 ,	winid_t,	and	so	on	–	takes	one	or	two	gluniversal_t
objects.	The	first	is	a	flag	indicating	whether	the	reference	argument	is	NULL	or	not.	The	ptrflag	field	of	this
gluniversal_t	should	be	FALSE	(0)	if	the	reference	is	NULL,	and	TRUE	(1)	otherwise.	If	FALSE,	that	is	the	end	of	the
argument;	you	should	not	use	a	gluniversal_t	to	explicitly	store	the	NULL	reference.	If	the	flag	is	TRUE,	you	must	then
put	a	gluniversal_t	storing	the	base	type	of	the	reference.

For	example,	consider	a	hypothetical	function,	with	selector	0xABCD:

void	glk_glomp(glui32	num,	winid_t	win,	glui32	*numref,	strid_t	*strref);

...and	the	calls:

glui32	value;
winid_t	mainwin;
strid_t	gamefile;
glk_glomp(5,	mainwin,	&value,	&gamefile);

To	perform	this	through	gidispatch_call(),	you	would	do	the	following:

gluniversal_t	arglist[6];
arglist[0].uint	=	5;
arglist[1].opaqueref	=	mainwin;
arglist[2].ptrflag	=	TRUE;
arglist[3].uint	=	value;
arglist[4].ptrflag	=	TRUE;
arglist[5].opaqueref	=	gamefile;
gidispatch_call(0xABCD,	6,	arglist);
value	=	arglist[3].uint;
gamefile	=	arglist[5].opaqueref;

Note	that	you	copy	the	value	of	the	reference	arguments	into	and	out	of	arglist.	Of	course,	it	may	be	that	glk_glomp()
only	uses	these	as	pass-out	references	or	pass-in	references;	if	so,	you	could	skip	copying	in	or	out.

For	further	examples:

glk_glomp(7,	mainwin,	NULL,	NULL);
...or...
gluniversal_t	arglist[4];
arglist[0].uint	=	7;
arglist[1].opaqueref	=	mainwin;
arglist[2].ptrflag	=	FALSE;
arglist[3].ptrflag	=	FALSE;
gidispatch_call(0xABCD,	4,	arglist);

glk_glomp(13,	NULL,	NULL,	&gamefile);
...or...
gluniversal_t	arglist[5];
arglist[0].uint	=	13;
arglist[1].opaqueref	=	NULL;
arglist[2].ptrflag	=	FALSE;
arglist[3].ptrflag	=	TRUE;
arglist[4].opaqueref	=	gamefile;
gidispatch_call(0xABCD,	5,	arglist);
gamefile	=	arglist[4].opaqueref;

glk_glomp(17,	NULL,	&value,	NULL);
...or...
gluniversal_t	arglist[5];
arglist[0].uint	=	17;
arglist[1].opaqueref	=	NULL;
arglist[2].ptrflag	=	TRUE;
arglist[3].uint	=	value;
arglist[4].ptrflag	=	FALSE;
gidispatch_call(0xABCD,	5,	arglist);
value	=	arglist[3].uint;

As	you	see,	the	length	of	arglist	depends	on	how	many	of	the	reference	arguments	are	NULL.

12.1.3.3.	Structures

A	structure	pointer	is	represented	by	a	single	ptrflag,	possibly	followed	by	a	sequence	of	gluniversal_t	objects	(one	for
each	field	of	the	structure.)	Again,	if	the	structure	pointer	is	non-NULL,	the	ptrflag	should	be	TRUE	and	be	followed	by
values;	if	not,	the	ptrflag	should	be	NULL	and	stands	alone.

For	example,	the	function	glk_select()	can	be	invoked	as	follows:

event_t	ev;
gluniversal_t	arglist[5];
arglist[0].ptrflag	=	TRUE;
gidispatch_call(0x00C0,	5,	arglist);
ev.type	=	arglist[1].uint;
ev.win	=	arglist[2].opaqueref;
ev.val1	=	arglist[3].uint;
ev.val2	=	arglist[4].uint;

Since	the	structure	passed	to	glk_select()	is	a	pass-out	reference	(the	entry	values	are	ignored),	you	don't	need	to	fill	in
arglist[1..4]	before	calling	gidispatch_call().

[[Theoretically,	you	would	invoke	glk_select(NULL)	by	setting	arglist[0].ptrflag	to	FALSE,	and	using	a	one-element
arglist	instead	of	five-element.	But	it's	illegal	to	pass	NULL	to	glk_select().	So	you	cannot	actually	do	this.]]

12.1.3.4.	Arrays

In	the	Glk	API,	an	array	argument	is	always	followed	by	a	numeric	argument	giving	the	array's	length.	These	two	C
arguments	are	a	single	logical	argument,	which	is	represented	by	one	or	three	gluniversal_t	objects.	The	first	is	a

ptrflag,	indicating	whether	the	argument	is	NULL	or	not.	The	second	is	a	pointer,	stored	in	the	array	field.	The	third	is
the	array	length,	stored	in	the	uint	field.	And	again,	if	the	ptrflag	is	NULL,	the	following	two	are	omitted.

For	example,	the	function	glk_put_buffer()	can	be	invoked	as	follows:

char	buf[64];
glui32	len	=	64;
glk_put_buffer(buf,	len);
...or...
gluniversal_t	arglist[3];
arglist[0].ptrflag	=	TRUE;
arglist[1].array	=	buf;
arglist[2].uint	=	len;
gidispatch_call(0x0084,	3,	arglist);

Since	you	are	passing	a	C	char	array	to	gidispatch_call(),	the	contents	will	be	read	directly	from	that.	There	is	no	need	to
copy	data	into	arglist,	as	you	would	for	a	basic	type.

If	you	are	implementing	a	VM	whose	native	representation	of	char	arrays	is	more	complex,	you	will	have	to	do	more
work.	You	should	allocate	a	C	char	array,	copy	your	characters	into	it,	make	the	call,	and	then	free	the	array.
[glk_put_buffer()	does	not	modify	the	array	passed	to	it,	so	there	is	no	need	to	copy	the	characters	out.]

12.1.3.5.	Return	Values

The	return	value	of	a	function	is	not	treated	specially.	It	is	simply	considered	to	be	a	pass-out	reference	argument	which
may	not	be	NULL.	It	comes	after	all	the	other	arguments	of	the	function.

For	example,	the	function	glk_window_get_rock()	can	be	invoked	as	follows:

glui32	rock;
winid_t	win;
rock	=	glk_window_get_rock(win);
...or...
gluniversal_t	arglist[3];
arglist[0].opaqueref	=	win;
arglist[1].ptrflag	=	TRUE;
gidispatch_call(0x0021,	3,	arglist);
rock	=	arglist[2].uint;

12.1.4.	Getting	Argument	Prototypes

There	are	many	possible	ways	to	set	up	a	gluniversal_t	array,	and	it's	illegal	to	call	gidispatch_call()	with	an	array	which
doesn't	match	the	function.	Furthermore,	some	references	are	passed	in,	some	passed	out,	and	some	both.	How	do	you
know	how	to	handle	the	argument	list?

One	possibility	is	to	recognize	each	function	selector,	and	set	up	the	arguments	appropriately.	However,	this	entails
writing	special	code	for	each	Glk	function;	which	is	exactly	what	we	don't	want	to	do.

Instead,	you	can	call	gidispatch_prototype().

char	*gidispatch_prototype(glui32	funcnum);

This	returns	a	string	which	encodes	the	proper	argument	list	for	the	given	function.	If	there	is	no	such	function	in	the
library,	this	returns	NULL.

The	prototype	string	for	the	glk_glomp()	function	described	above	would	be:	"4IuQa&Iu&Qb:".	The	"4"	is	the	number	of
arguments	(including	the	return	value,	if	there	is	one,	which	in	this	case	there	isn't.)	"Iu"	denotes	an	unsigned	integer;
"Qa"	is	an	opaque	object	of	class	0	(window).	"&Iu"	is	a	reference	to	an	unsigned	integer,	and	"&Qb"	is	a	reference	to	a
stream.	The	colon	at	the	end	terminates	the	argument	list;	the	return	value	would	follow	it,	if	there	was	one.

Note	that	the	initial	number	("4"	in	this	case)	is	the	number	of	logical	arguments,	not	the	number	of	gluniversal_t	objects
which	will	be	passed	to	gidispatch_call().	The	glk_glomp()	call	uses	anywhere	from	four	to	six	gluniversal_t	objects,	as
demonstrated	above.

The	basic	type	codes:

·		Iu,	Is:	Unsigned	and	signed	32-bit	integer.
·		Cn,	Cu,	Cs:	Character,	unsigned	char,	and	signed	char.	 [Of	course	Cn	will	be	the	same	as	either	Cu	or	Cs,	depending

on	the	platform.	For	this	reason,	Glk	avoids	using	it,	but	it	is	included	here	for	completeness.]
·		S:	A	C-style	string	(null-terminated	array	of	char).	In	Glk,	strings	are	always	treated	as	read-only	and	used

immediately;	the	library	does	not	retain	a	reference	to	a	string	between	Glk	calls.	A	Glk	call	that	wants	to	use
writable	char	arrays	will	use	an	array	type	("#C"),	not	string	("S").

·		U:	A	zero-terminated	array	of	32-bit	integers.	This	is	primarily	intended	as	a	Unicode	equivalent	of	"S".	Like	"S"
strings,	"U"	strings	are	read-only	and	used	immediately.	A	Glk	call	that	wants	to	use	writable	Unicode	arrays	will	use
an	array	type	("#Iu")	instead	of	"U".

·		F:	A	floating-point	value.	Glk	does	not	currently	use	floating-point	values,	but	we	might	as	well	define	a	code	for
them.

·		Qa,	Qb,	Qc...:	A	reference	to	an	opaque	object.	The	second	letter	determines	which	class	is	involved.	(The	number	of
classes	can	be	gleaned	from	gidispatch_count_classes();	see	section	12.1.2,	"Interrogating	the	Interface").	[If	Glk
expands	to	have	more	than	26	classes,	we'll	think	of	something.]

Any	type	code	can	be	prefixed	with	one	or	more	of	the	following	characters:

·		&:	A	reference	to	the	type;	or,	if	you	like,	a	variable	passed	by	reference.	The	reference	is	passed	both	in	and	out,	so
you	must	copy	the	value	in	before	calling	gidispatch_call()	and	copy	it	out	afterward.

·		<:	A	reference	which	is	pass-out	only.	The	initial	value	is	ignored,	so	you	only	need	copy	out	the	value	after	the	call.
·		>:	A	reference	which	is	pass-in	only.	 [This	is	not	generally	used	for	simple	types,	but	is	useful	for	structures	and

arrays.]
·		+:	Combined	with	"&",	"<",	or	">",	indicates	that	a	valid	reference	is	mandatory;	NULL	cannot	be	passed.	 [Note	that

even	though	the	ptrflag	gluniversal_t	for	a	"+"	reference	is	always	TRUE,	it	cannot	be	omitted.]
·		::	The	colon	separates	the	arguments	from	the	return	value,	or	terminates	the	string	if	there	is	no	return	value.

Since	return	values	are	always	non-NULL	pass-out	references,	you	may	treat	":"	as	equivalent	to	"<+".	The	colon	is
never	combined	with	any	other	prefix	character.

·		[...]:	Combined	with	"&",	"<",	or	">",	indicates	a	structure	reference.	Between	the	brackets	is	a	complete	argument
list	encoding	string,	including	the	number	of	arguments.	[[For	example,	the	prototype	string	for	glk_select()	is	"1<+
[4IuQaIuIu]:"	–	one	argument,	which	is	a	pass-out	non-NULL	reference	to	a	structure,	which	contains	four
arguments.]]	Currently,	structures	in	Glk	contain	only	basic	types.

·		#:	Combined	with	"&",	"<",	or	">",	indicates	an	array	reference.	As	described	above,	this	encompasses	up	to	three
gluniversal_t	objects	–	ptrflag,	pointer,	and	integer	length.	[Depending	on	the	design	of	your	program,	you	may	wish
to	pass	a	pointer	directly	to	your	program's	memory,	or	allocate	an	array	and	copy	the	contents	in	and	out.	See
section	12.1.3.4,	"Arrays".]

·		!:	Combined	with	"#",	indicates	that	the	array	is	 retained	by	the	library.	The	library	will	keep	a	reference	to	the
array;	the	contents	are	undefined	until	further	notice.	You	should	not	use	or	copy	the	contents	of	the	array	out	after
the	call,	even	for	"&#!"	or	"<#!"	arrays.	Instead,	do	it	when	the	library	releases	the	array.	[For	example,
glk_stream_open_memory()	retains	the	array	that	you	pass	it,	and	releases	it	when	the	stream	is	closed.	The	library
can	notify	you	automatically	when	arrays	are	retained	and	released;	see	section	12.1.5.2,	"Retained	Array	Registry".]

The	order	of	these	characters	and	prefixes	is	not	completely	arbitrary.	Here	is	a	formal	grammar	for	the	prototype
strings.	[Thanks	to	Neil	Cerutti	for	working	this	out.]

<prototype>			->		ArgCount	[<arg_list>]	':'	[<arg>]	EOL
<arg_list>				->		<arg>	{	<arg>	}
<arg>									->		TypeName	|	<ref_type>
<ref_type>				->		RefType	['+']	<target_type>
<target_type>	->		TypeName	|	<array>	|	<struct>
<array>							->		'#'	['!']	TypeName
<struct>						->		'['	ArgCount	[<arg_list>]	']'

TypeName	is	"I[us]|C[nus]|S|U|F|Q[a-z]"
ArgCount	is	'\d+'
RefType	is	'&|<|>'
EOL	is	end	of	input

12.1.5.	Functions	the	Library	Must	Provide

Ideally,	the	three	layers	–	program,	dispatch	layer,	Glk	library	–	would	be	completely	modular;	each	would	refer	only	to
the	layers	beneath	it.	Sadly,	there	are	a	few	places	where	the	library	must	notify	the	program	that	something	has

happened.	Worse,	these	situations	are	only	relevant	to	programs	which	use	the	dispatch	layer,	and	then	only	some	of
those.

Since	C	is	uncomfortable	with	the	concept	of	calling	functions	which	may	not	exist,	Glk	handles	this	with	call-back
function	pointers.	The	program	can	pass	callbacks	in	to	the	library;	if	it	does,	the	library	will	call	them,	and	if	not,	the
library	doesn't	try.

These	callbacks	are	optional,	in	the	sense	that	the	program	may	or	may	not	set	them.	However,	any	library	which	wants
to	interoperate	with	the	dispatch	layer	must	allow	the	program	to	set	them;	it	is	the	program's	choice.	The	library	does
this	by	implementing	set_registry	functions	–	the	functions	to	which	the	program	passes	its	callbacks.

[Even	though	these	callbacks	and	the	functions	to	set	them	are	declared	in	gi_dispa.h,	they	are	not	defined	in	gi_dispa.c.
The	dispatch	layer	merely	coordinates	them.	The	program	defines	the	callback	functions;	the	library	calls	them.]

12.1.5.1.	Opaque	Object	Registry

The	Glk	API	refers	to	opaque	objects	by	pointer;	but	a	VM	probably	cannot	store	pointers	to	native	memory.	Therefore,	a
VM	program	will	want	to	keep	a	VM-accessible	collection	of	opaque	objects.	[For	example,	it	might	keep	a	hash	table	for
each	opaque	object	class,	mapping	integer	identifiers	to	object	pointers.]

To	make	this	possible,	a	Glk	library	must	implement	gidispatch_set_object_registry().

void	gidispatch_set_object_registry(gidispatch_rock_t	(*reg)(void	*obj,	glui32	objclass),	void	
(*unreg)(void	*obj,	glui32	objclass,	gidispatch_rock_t	objrock));

Your	program	calls	this	early	(before	it	begins	actually	executing	VM	code.)	You	pass	in	two	function	pointers,	matching
the	following	prototypes:

gidispatch_rock_t	my_vm_reg_object(void	*obj,	glui32	objclass);
void	my_vm_unreg_object(void	*obj,	glui32	objclass,	gidispatch_rock_t	objrock);

Whenever	the	Glk	library	creates	an	object,	it	will	call	my_vm_reg_object().	It	will	pass	the	object	pointer	and	the	class
number	(from	0	to	N-1,	where	N	is	the	value	returned	by	gidispatch_count_classes().)

You	can	return	any	value	in	the	gidispatch_rock_t	object;	the	library	will	stash	this	away	inside	the	object.	 [Note	that	this
is	entirely	separate	from	the	regular	Glk	rock,	which	is	always	a	glui32	and	can	be	set	independently.]

typedef	union	glk_objrock_union	{
				glui32	num;
				void	*ptr;
}	gidispatch_rock_t;

Whenever	the	Glk	library	destroys	an	object,	it	will	call	my_vm_unreg_object().	It	passes	you	the	object	pointer,	class
number,	and	the	object	rock.

You	can,	at	any	time,	get	the	object	rock	of	an	object.	The	library	implements	this	function:

gidispatch_rock_t	gidispatch_get_objrock(void	*obj,	glui32	objclass);

With	this	and	your	two	callbacks,	you	can	maintain	(say)	a	hash	table	for	each	object	class,	and	easily	convert	back	and
forth	between	hash	table	keys	and	Glk	object	pointers.	A	more	sophisticated	run-time	system	(such	as	Java)	could	create
a	typed	VM	object	for	every	Glk	object,	thus	allowing	VM	code	to	manipulate	Glk	objects	intelligently.

One	significant	detail:	It	is	possible	that	some	Glk	objects	will	already	exist	when	your	glk_main()	function	is	called.	 [For
example,	MacGlk	can	open	a	stream	when	the	user	double-clicks	a	file;	this	occurs	before	glk_main().]	So	when	you	call
gidispatch_set_object_registry(),	it	may	immediately	call	your	my_vm_reg_object()	callback,	notifying	you	of	the
existing	objects.	You	must	be	prepared	for	this	possibility.	[If	you	are	keeping	hash	tables,	for	example,	create	them
before	you	call	gidispatch_set_object_registry().]

12.1.5.2.	Retained	Array	Registry

A	few	Glk	functions	take	an	array	and	hold	onto	it.	The	memory	is	"owned"	by	the	library	until	some	future	Glk	call
releases	it.	While	the	library	retains	the	array,	your	program	should	not	read,	write,	move,	or	deallocate	it.	When	the

library	releases	it,	the	contents	are	in	their	final	form,	and	you	can	copy	them	out	(if	appropriate)	and	dispose	of	the
memory	as	you	wish.

To	allow	this,	the	library	implements	gidispatch_set_retained_registry().

void	gidispatch_set_retained_registry(gidispatch_rock_t	(*reg)(void	*array,	glui32	len,	char	
*typecode),	void	(*unreg)(void	*array,	glui32	len,	char	*typecode,	gidispatch_rock_t	objrock));

Again,	you	pass	in	two	function	pointers:

gidispatch_rock_t	my_vm_reg_array(void	*array,	glui32	len,	char	*typecode);
void	my_vm_unreg_array(void	*array,	glui32	len,	char	*typecode,	gidispatch_rock_t	objrock);

Whenever	a	Glk	function	retains	an	array,	it	will	call	my_vm_reg_array().	This	occurs	only	if	you	pass	an	array	to	an
argument	with	the	"#!"	prefix.	[But	not	in	every	such	case.	Wait	for	the	my_vm_reg_array()	call	to	confirm	it.] 	The	library
passes	the	array	and	its	length,	exactly	as	you	put	them	in	the	gluniversal_t	array.	It	also	passes	the	string	which
describes	the	argument.

[Currently,	the	only	calls	that	retain	arrays	are	glk_request_line_event(),	glk_stream_open_memory(),
glk_request_line_event_uni(),	and	glk_stream_open_memory_uni().	The	first	two	of	these	use	arrays	of	characters,	so
the	string	is	"&+#!Cn".	The	latter	two	use	arrays	of	glui32,	so	the	string	is	"&+#!Iu".]

You	can	return	any	value	in	the	gidispatch_rock_t	object;	the	library	will	stash	this	away	with	the	array.

When	a	Glk	function	releases	a	retained	array,	it	will	call	my_vm_unreg_array().	It	passes	back	the	same	array,	len,	and
typecode	parameters,	as	well	as	the	gidispatch_rock_t	you	returned	from	my_vm_reg_array().

With	these	callbacks,	you	can	maintain	a	collection	of	retained	arrays.	You	can	use	this	to	copy	data	from	C	arrays	to
your	own	data	structures,	or	keep	relocatable	memory	locked,	or	prevent	a	garbage-collection	system	from	deallocating
an	array	while	Glk	is	writing	to	it.

12.1.6.	Table	of	Selectors

These	values,	and	the	values	used	for	future	Glk	calls,	are	integers	in	the	range	0x0001	to	0xFFFF	(1	to	65535).	The	values
are	not	sequential;	they	are	divided	into	groups,	roughly	by	category.	Zero	is	not	the	selector	of	any	Glk	call,	so	it	may	be
used	for	a	null	value.

·		0x0001:	glk_exit
·		0x0002:	glk_set_interrupt_handler
·		0x0003:	glk_tick
·		0x0004:	glk_gestalt
·		0x0005:	glk_gestalt_ext
·		0x0020:	glk_window_iterate
·		0x0021:	glk_window_get_rock
·		0x0022:	glk_window_get_root
·		0x0023:	glk_window_open
·		0x0024:	glk_window_close
·		0x0025:	glk_window_get_size
·		0x0026:	glk_window_set_arrangement
·		0x0027:	glk_window_get_arrangement
·		0x0028:	glk_window_get_type
·		0x0029:	glk_window_get_parent
·		0x002A:	glk_window_clear
·		0x002B:	glk_window_move_cursor
·		0x002C:	glk_window_get_stream
·		0x002D:	glk_window_set_echo_stream
·		0x002E:	glk_window_get_echo_stream
·		0x002F:	glk_set_window
·		0x0030:	glk_window_get_sibling
·		0x0040:	glk_stream_iterate
·		0x0041:	glk_stream_get_rock
·		0x0042:	glk_stream_open_file
·		0x0043:	glk_stream_open_memory

·		0x0044:	glk_stream_close
·		0x0045:	glk_stream_set_position
·		0x0046:	glk_stream_get_position
·		0x0047:	glk_stream_set_current
·		0x0048:	glk_stream_get_current
·		0x0049:	glk_stream_open_resource
·		0x0060:	glk_fileref_create_temp
·		0x0061:	glk_fileref_create_by_name
·		0x0062:	glk_fileref_create_by_prompt
·		0x0063:	glk_fileref_destroy
·		0x0064:	glk_fileref_iterate
·		0x0065:	glk_fileref_get_rock
·		0x0066:	glk_fileref_delete_file
·		0x0067:	glk_fileref_does_file_exist
·		0x0068:	glk_fileref_create_from_fileref
·		0x0080:	glk_put_char
·		0x0081:	glk_put_char_stream
·		0x0082:	glk_put_string
·		0x0083:	glk_put_string_stream
·		0x0084:	glk_put_buffer
·		0x0085:	glk_put_buffer_stream
·		0x0086:	glk_set_style
·		0x0087:	glk_set_style_stream
·		0x0090:	glk_get_char_stream
·		0x0091:	glk_get_line_stream
·		0x0092:	glk_get_buffer_stream
·		0x00A0:	glk_char_to_lower
·		0x00A1:	glk_char_to_upper
·		0x00B0:	glk_stylehint_set
·		0x00B1:	glk_stylehint_clear
·		0x00B2:	glk_style_distinguish
·		0x00B3:	glk_style_measure
·		0x00C0:	glk_select
·		0x00C1:	glk_select_poll
·		0x00D0:	glk_request_line_event
·		0x00D1:	glk_cancel_line_event
·		0x00D2:	glk_request_char_event
·		0x00D3:	glk_cancel_char_event
·		0x00D4:	glk_request_mouse_event
·		0x00D5:	glk_cancel_mouse_event
·		0x00D6:	glk_request_timer_events
·		0x00E0:	glk_image_get_info
·		0x00E1:	glk_image_draw
·		0x00E2:	glk_image_draw_scaled
·		0x00E8:	glk_window_flow_break
·		0x00E9:	glk_window_erase_rect
·		0x00EA:	glk_window_fill_rect
·		0x00EB:	glk_window_set_background_color
·		0x00F0:	glk_schannel_iterate
·		0x00F1:	glk_schannel_get_rock
·		0x00F2:	glk_schannel_create
·		0x00F3:	glk_schannel_destroy
·		0x00F4:	glk_schannel_create_ext
·		0x00F7:	glk_schannel_play_multi
·		0x00F8:	glk_schannel_play
·		0x00F9:	glk_schannel_play_ext
·		0x00FA:	glk_schannel_stop
·		0x00FB:	glk_schannel_set_volume
·		0x00FC:	glk_sound_load_hint
·		0x00FD:	glk_schannel_set_volume_ext
·		0x00FE:	glk_schannel_pause

·		0x00FF:	glk_schannel_unpause
·		0x0100:	glk_set_hyperlink
·		0x0101:	glk_set_hyperlink_stream
·		0x0102:	glk_request_hyperlink_event
·		0x0103:	glk_cancel_hyperlink_event
·		0x0120:	glk_buffer_to_lower_case_uni
·		0x0121:	glk_buffer_to_upper_case_uni
·		0x0122:	glk_buffer_to_title_case_uni
·		0x0123:	glk_buffer_canon_decompose_uni
·		0x0124:	glk_buffer_canon_normalize_uni
·		0x0128:	glk_put_char_uni
·		0x0129:	glk_put_string_uni
·		0x012A:	glk_put_buffer_uni
·		0x012B:	glk_put_char_stream_uni
·		0x012C:	glk_put_string_stream_uni
·		0x012D:	glk_put_buffer_stream_uni
·		0x0130:	glk_get_char_stream_uni
·		0x0131:	glk_get_buffer_stream_uni
·		0x0132:	glk_get_line_stream_uni
·		0x0138:	glk_stream_open_file_uni
·		0x0139:	glk_stream_open_memory_uni
·		0x013A:	glk_stream_open_resource_uni
·		0x0140:	glk_request_char_event_uni
·		0x0141:	glk_request_line_event_uni
·		0x0150:	glk_set_echo_line_event
·		0x0151:	glk_set_terminators_line_event
·		0x0160:	glk_current_time
·		0x0161:	glk_current_simple_time
·		0x0168:	glk_time_to_date_utc
·		0x0169:	glk_time_to_date_local
·		0x016A:	glk_simple_time_to_date_utc
·		0x016B:	glk_simple_time_to_date_local
·		0x016C:	glk_date_to_time_utc
·		0x016D:	glk_date_to_time_local
·		0x016E:	glk_date_to_simple_time_utc
·		0x016F:	glk_date_to_simple_time_local

Note	that	glk_main()	does	not	have	a	selector,	because	it's	provided	by	your	program,	not	the	library.

There	is	no	way	to	use	these	selectors	directly	in	the	Glk	API.	 [An	earlier	version	of	Glk	had	gestalt	selectors
gestalt_FunctionNameToID	and	gestalt_FunctionIDToName,	but	these	have	been	withdrawn.]	They	are	defined	and
used	only	by	the	dispatch	layer.

Call	selectors	0x1100	to	0x11FF	(and	the	same	range	of	gestalt	selectors)	are	reserved	for	extension	projects	by	Dannii
Willis.	Call	selectors	0x1200	to	0x12FF	(and	gestalt	selector	0x1200)	are	reserved	for	extension	projects	by	Carlos	Sanchez.
Call	selectors	0x2200	to	0x22FF	(and	the	same	range	of	gestalt	selectors)	are	reserved	for	iOS	extension	features	by
Andrew	Plotkin.	Call	selectors	0x1400	to	0x14FF	(and	the	same	range	of	gestalt	selectors)	are	reserved	for	extension
projects	by	ZZO38.	These	are	not	documented	here.

12.2.	The	Blorb	Layer

The	material	described	in	this	section	is	not	part	of	the	Glk	API	per	se.	It	is	an	external	layer	which	allows	the	library	to
load	resources	(images	and	sounds)	from	a	file	specified	by	your	program.	The	Blorb	file	format	is	a	standard	IF
resource	archive.

The	Glk	spec	does	not	require	that	resources	be	stored	in	a	Blorb	file.	It	says	only	that	the	library	knows	how	to	load
them	and	use	them,	when	you	so	request.	However,	Blorb	is	the	recommended	way	to	supply	portable	resources.	Most
Glk	libraries	will	support	Blorb,	using	the	interface	defined	in	this	section.

The	quick	summary:	resources	are	identified	by	type	(image,	sound,	etc)	and	by	an	index	number.	 [But	not	by	name.
This	is	for	historical	reasons;	Infocom's	Z-machine	architecture	used	this	scheme.]

For	the	complete	Blorb	specification	and	tools	for	Blorb	file	manipulation,	see:

http://eblong.com/zarf/blorb/

12.2.1.	How	This	Works

The	Blorb	layer	is	implemented	in	a	C	source	file,	gi_blorb.c,	and	its	header,	gi_blorb.h.	This	code	is	(mostly)	platform-
independent	–	it	is	identical	in	every	library,	just	as	the	glk.h	header	file	is	identical	in	every	library.	Each	library	author
who	wants	to	support	Blorb	should	download	the	gi_blorb.c	and	gi_blorb.h	files	from	the	Glk	web	site,	and	compile
them	unchanged	into	the	library.

Most	of	the	functions	defined	in	gi_blorb.h	are	intended	for	the	library.	If	you	are	writing	a	Glk	program,	you	can	ignore
them	all,	except	for	giblorb_set_resource_map();	see	section	12.2.2,	"What	the	Program	Does".	If	you	are	implementing	a
Glk	library,	you	can	use	this	API	to	find	and	load	resource	data.

12.2.2.	What	the	Program	Does

If	you	wish	your	program	to	load	its	resources	from	a	Blorb	file,	you	need	to	find	and	open	that	file	in	your	startup	code.
(See	section	11.1,	"Startup	Options".)	Each	platform	will	have	appropriate	functions	available	for	finding	startup	data.	Be
sure	to	open	the	file	in	binary	mode,	not	text	mode.	Once	you	have	opened	the	file	as	a	Glk	stream,	pass	it	to
giblorb_set_resource_map().

giblorb_err_t	giblorb_set_resource_map(strid_t	file);

This	function	tells	the	library	that	the	file	is	indeed	the	Blorby	source	of	all	resource	goodness.	Whenever	your	program
calls	an	image	or	sound	function,	such	as	glk_image_draw(),	the	library	will	search	this	file	for	the	resource	you	request.

Do	not	close	the	stream	after	calling	this	function.	The	library	is	responsible	for	closing	the	stream	at	shutdown	time.

If	you	do	not	call	giblorb_set_resource_map()	in	your	startup	code,	or	if	it	fails,	the	library	is	left	to	its	own	devices	for
finding	resources.	Some	libraries	may	try	to	load	resources	from	individual	files	–	PIC1,	PIC2,	PIC3,	and	so	on.	(See	the
Blorb	specification	for	more	on	this	approach.)	Other	libraries	will	not	have	any	other	loading	mechanism	at	all;	no
resources	will	be	available.

12.2.3.	What	the	Library	Does

Each	library	must	implement	giblorb_set_resource_map(),	if	it	wishes	to	support	Blorb	at	all.	Generally,	this	function
should	create	a	Blorb	map	and	stash	it	away	somewhere.	It	may	also	want	to	stash	the	stream	itself,	so	that	the	library
can	read	data	directly	from	it.

giblorb_set_resource_map()	should	return	giblorb_err_None	(0)	if	it	succeeded,	or	the	appropriate	Blorb	error	code	if
not.	See	section	12.2.5,	"Blorb	Errors".

The	library	must	also	link	in	the	gi_blorb.c	file.	Most	of	this	should	compile	without	difficulty	on	any	platform.
However,	it	does	need	to	allocate	memory.	As	supplied,	gi_blorb.c	calls	the	ANSI	functions	malloc(),	realloc(),	and
free().	If	this	is	not	appropriate	on	your	OS,	feel	free	to	change	these	calls.	They	are	isolated	at	the	end	of	the	file.

12.2.4.	What	the	Blorb	Layer	Does

These	are	the	functions	which	are	implemented	in	gi_blorb.c.	They	will	be	compiled	into	the	library,	but	they	are	the
same	on	every	platform.	In	general,	only	the	library	needs	to	call	these	functions.	The	Glk	program	should	allow	the
library	to	do	all	the	resource	handling.

giblorb_err_t	giblorb_create_map(strid_t	file,	giblorb_map_t	**newmap);

This	reads	Blorb	data	out	of	a	Glk	stream.	It	does	not	load	every	resource	at	once;	instead,	it	creates	an	map	in	memory
which	make	it	easy	to	find	resources.	A	pointer	to	the	map	is	stored	in	newmap.	This	is	an	opaque	object;	you	pass	it	to
the	other	Blorb-layer	functions.

giblorb_err_t	giblorb_destroy_map(giblorb_map_t	*map);

Deallocate	the	map	and	all	associated	memory.	This	does	 not	close	the	original	stream.

http://eblong.com/zarf/blorb/

giblorb_err_t	giblorb_load_chunk_by_type(giblorb_map_t	*map,	glui32	method,	giblorb_result_t	*res,	
glui32	chunktype,	glui32	count);

This	loads	a	chunk	of	a	given	type.	The	count	parameter	distinguishes	between	chunks	of	the	same	type.	If	count	is	zero,
the	first	chunk	of	that	type	is	loaded,	and	so	on.

To	load	a	chunk	of	an	IFF	FORM	type	(such	as	AIFF),	you	should	pass	in	the	form	type,	rather	than	FORM.	 [This
introduces	a	slight	ambiguity	–	you	cannot	distiguish	between	a	FORM	AIFF	chunk	and	a	non-FORM	chunk	of	type	AIFF.
However,	the	latter	is	almost	certainly	a	mistake.]

The	returned	data	is	written	into	res,	according	to	method:

#define	giblorb_method_DontLoad	(0)
#define	giblorb_method_Memory	(1)
#define	giblorb_method_FilePos	(2)
typedef	struct	giblorb_result_struct	{
				glui32	chunknum;
				union	{
								void	*ptr;
								glui32	startpos;
				}	data;
				glui32	length;
				glui32	chunktype;
}	giblorb_result_t;

The	chunknum	field	is	filled	in	with	the	number	of	the	chunk.	(This	value	can	then	be	passed	to
giblorb_load_chunk_by_number()	or	giblorb_unload_chunk().)	The	length	field	is	filled	in	with	the	length	of	the	chunk
in	bytes.	The	chunktype	field	is	the	chunk's	type,	which	of	course	will	be	the	type	you	asked	for.

If	you	specify	giblorb_method_DontLoad,	no	data	is	actually	loaded	in.	You	can	use	this	if	you	are	only	interested	in
whether	a	chunk	exists,	or	in	the	chunknum	and	length	parameters.

If	you	specify	giblorb_method_FilePos,	data.startpos	is	filled	in	with	the	file	position	of	the	chunk	data.	You	can	use
glk_stream_set_position()	to	read	the	data	from	the	stream.

If	you	specify	giblorb_method_Memory,	data.ptr	is	filled	with	a	pointer	to	allocated	memory	containing	the	chunk	data.
This	memory	is	owned	by	the	map,	not	you.	If	you	load	the	chunk	more	than	once	with	giblorb_method_Memory,	the
Blorb	layer	is	smart	enough	to	keep	just	one	copy	in	memory.	You	should	not	deallocate	this	memory	yourself;	call
giblorb_unload_chunk()	instead.

giblorb_err_t	giblorb_load_chunk_by_number(giblorb_map_t	*map,	glui32	method,	giblorb_result_t	
*res,	glui32	chunknum);

This	is	similar	to	giblorb_load_chunk_by_type(),	but	it	loads	a	chunk	with	a	given	chunk	number.	The	type	of	the	chunk
can	be	found	in	the	chunktype	field	of	giblorb_result_t.	You	can	get	the	chunk	number	from	the	chunknum	field,	after
calling	one	of	the	other	load	functions.

giblorb_err_t	giblorb_unload_chunk(giblorb_map_t	*map,	glui32	chunknum);

This	frees	the	chunk	data	allocated	by	giblorb_method_Memory.	If	the	given	chunk	has	never	been	loaded	into
memory,	this	has	no	effect.

giblorb_err_t	giblorb_load_resource(giblorb_map_t	*map,	glui32	method,	giblorb_result_t	*res,	
glui32	usage,	glui32	resnum);

This	loads	a	resource,	given	its	usage	and	resource	number.	Currently,	the	three	usage	values	are	giblorb_ID_Pict
(images),	giblorb_ID_Snd	(sounds),	and	giblorb_ID_Exec	(executable	program).	See	the	Blorb	specification	for	more
information	about	the	types	of	data	that	can	be	stored	for	these	usages.

Note	that	a	resource	number	is	not	the	same	as	a	chunk	number.	The	resource	number	is	the	sound	or	image	number
specified	by	a	Glk	program.	Chunk	number	is	arbitrary,	since	chunks	in	a	Blorb	file	can	be	in	any	order.	To	find	the
chunk	number	of	a	given	resource,	call	giblorb_load_resource()	and	look	in	res.chunknum.

giblorb_err_t	giblorb_count_resources(giblorb_map_t	*map,	glui32	usage,	glui32	*num,	glui32	*min,	

glui32	*max);

This	counts	the	number	of	chunks	with	a	given	usage	(image,	sound,	or	executable.)	The	total	number	of	chunks	of	that
usage	is	stored	in	num.	The	lowest	and	highest	resource	number	of	that	usage	are	stored	in	min	and	max.	You	can	leave
any	of	the	three	pointers	NULL	if	you	don't	care	about	that	information.

12.2.5.	Blorb	Errors

All	Blorb	layer	functions,	including	giblorb_set_resource_map(),	return	the	following	error	codes.

·		giblorb_err_None,	or	zero:	No	error.
·		giblorb_err_CompileTime:	Something	is	compiled	wrong	in	the	Blorb	layer.
·		giblorb_err_Alloc:	Memory	could	not	be	allocated.
·		giblorb_err_Read:	Data	could	not	be	read	from	the	file.
·		giblorb_err_NotAMap:	The	map	parameter	is	invalid.
·		giblorb_err_Format:	The	Blorb	file	is	corrupted	or	invalid.
·		giblorb_err_NotFound:	The	requested	data	could	not	be	found.

	Glk: A Portable Interface Standard for IF
	0. Introduction
	0.1. What Glk Is
	0.2. What About the Virtual Machine?
	0.3. What Does Glk Not Do?
	0.4. Conventions of This Document
	0.5. Credits

	1. Overall Structure
	1.1. Your Program's Main Function
	1.2. Exiting Your Program
	1.3. The Interrupt Handler
	1.4. The Tick Thing
	1.5. Basic Types
	1.6. Opaque Objects
	1.6.1. Rocks
	1.6.2. Iterating Through Opaque Objects

	1.7. The Gestalt System
	1.8. The Version Number
	1.9. Other API Conventions

	2. Character Encoding
	2.1. Testing for Unicode Capabilities
	2.2. Output
	2.3. Line Input
	2.4. Character Input
	2.5. Upper and Lower Case
	2.6. Unicode String Normalization
	2.6.1. A Note on Unicode Case-Folding and Normalization

	3. Windows
	3.1. Window Arrangement
	3.2. Window Opening, Closing, and Constraints
	3.3. Changing Window Constraints
	3.4. A Note on Display Style
	3.5. The Types of Windows
	3.5.1. Blank Windows
	3.5.2. Pair Windows
	3.5.3. Text Buffer Windows
	3.5.4. Text Grid Windows
	3.5.5. Graphics Windows

	3.6. Echo Streams
	3.7. Other Window Functions

	4. Events
	4.1. Character Input Events
	4.2. Line Input Events
	4.3. Mouse Input Events
	4.4. Timer Events
	4.5. Window Arrangement Events
	4.6. Window Redrawing Events
	4.7. Sound Notification Events
	4.8. Hyperlink Events
	4.9. Other Events

	5. Streams
	5.1. How To Print
	5.2. How To Read
	5.3. Closing Streams
	5.4. Stream Positions
	5.5. Styles
	5.5.1. Suggesting the Appearance of Styles
	5.5.2. Testing the Appearance of Styles

	5.6. The Types of Streams
	5.6.1. Window Streams
	5.6.2. Memory Streams
	5.6.3. File Streams
	5.6.4. Resource Streams

	5.7. Other Stream Functions

	6. File References
	6.1. The Types of File References
	6.2. Other File Reference Functions

	7. Graphics
	7.1. Image Resources
	7.2. Graphics in Graphics Windows
	7.3. Graphics in Text Buffer Windows
	7.4. Testing for Graphics Capabilities

	8. Sound
	8.1. Sound Resources
	8.2. Creating and Destroying Sound Channels
	8.3. Playing Sounds
	8.4. Other Sound Channel Functions
	8.5. Testing for Sound Capabilities

	9. Hyperlinks
	9.1. Creating Hyperlinks
	9.2. Accepting Hyperlink Events
	9.3. Testing for Hyperlink Capabilities

	10. The System Clock
	10.1. Time and Date Conversions
	10.2. Testing for Clock Capabilities

	11. Porting, Adapting, and Other Messy Bits
	11.1. Startup Options
	11.2. Going Outside the Glk API
	11.2.1. Memory Management
	11.2.2. String Manipulation
	11.2.3. File Handling
	11.2.4. Private Extensions to Glk

	11.3. Glk and the Virtual Machine
	11.3.1. Implementing a Higher Layer Over Glk
	11.3.2. Glk as a VM's Native API

	12. Appendices
	12.1. The Dispatch Layer
	12.1.1. How This Works
	12.1.2. Interrogating the Interface
	12.1.3. Dispatching
	12.1.4. Getting Argument Prototypes
	12.1.5. Functions the Library Must Provide
	12.1.6. Table of Selectors

	12.2. The Blorb Layer
	12.2.1. How This Works
	12.2.2. What the Program Does
	12.2.3. What the Library Does
	12.2.4. What the Blorb Layer Does
	12.2.5. Blorb Errors

