Internal Secrets of Infocom Games™

Everything you wanted to know about the internal working of all
text-based Infocom games

Michael Ko
April 2019 [2nd Ed.|

*https://ifsecrets.blogspot.com

https://ifsecrets.blogspot.com

Contents

Contents

1

ZIL, ZILCH, ZAP, and ZIP

1.1 Introduction e
1.2 ZIP versions 1 e
1.3 ZIP version 2
1.4 ZIP version 3
1.5 Enhanced ZIP (EZIP), version 4
1.6 Extended ZIP (XZIP), version 5
1.7 YZIP, version 6 L L
General structure of Infocom Games and Data Structures

2.1 Introduction and Story Headers
2.2 The Memory Layout of Infocom Games
2.3 The Massive Object Table
2.4 Global Variables. e e
2.5 Tables and Buffers o

Syntax Entries - The Biggest Mystery of them All

3.1 Introduction e
3.2 Prepositions e e e
3.3 Syntax Entry Pointer Table o
3.4 Syntax Entries
3.5 Get What I Mean (GWIM) Feature
3.6 Location Restriction of Objects Lo
3.7 Pre-actions and Actions e
3.8 An Example
3.9 Update: Compact Syntaxes to Save Space

Execution of Infocom Games - An Overview

4.1 Introduction L e e e e
4.2 Initialization with GO
4.3 Heart Beat of the Game with MAIN-LOOP
4.4 Understanding the User with PARSER
4.5 Completing Previous Command with ORPHAN-MERGE
4.6 Match the Command with SYNTAX-CHECK
4.7 Find the Objects with SNARF-OBJECT
4.8 Final check on Objects with TAKE-CHECK and MANY-CHECK
4.9 Call the Actions with PERFORM
4.10 Tick the CLOCKER e e e
4.11 Graphic representation of Game Flow

GO - Gentlemen, Start Your Engines!

5.1 Introduction
5.2 Running GO L
MAIN-LOOP - Heart of the Game

6.1 Introduction e e
6.2 The Details e e
6.3 Details of Multiples of Multiples
6.4 Update: Managing Global Variables,

11
11
11
11
11
12
12
13
13
13

14
14
14
14
15
15
15
15
15
15
15
15

16
16
16

Contents

6.5 Update: How many NOT-HERE-OBJECTs? 18
6.6 Update: Checking For Invalid Exceptions 19
7 PARSER: How Now Brown Cow 19
7.1 Introduction e 19
7.2 Characters vs. Tokens e 19
7.3 PARSER Variables and Grammatical Structure Definitions 20
7.4 PARSER Table (ITBL) 21
7.5 Checking Word Types with WT? 21
7.6 Start of PARSER: Where is the command? 22
7.7 Now, Traverse the Tokens... 23
7.8 Update: Speaking to Actors with Quotes 24
7.9 Update: Titles and Adverbs (briefly) 25
7.10 Update: Numbers, a new object o 26
8 PARSER: New Commands and Routines 27
8.1 Introduction e e e 27
8.2 STUFF . . . e 27
8.3 INBUF-STUFFE e 28
8.4 New AGAIN command e 28
8.5 OOPS! . . e e 28
8.6 INBUF-ADD e 29
87 UNDO . . . e e 29
8.8 Update: Other Minor Changes in PARSER 30
8.9 Update: ReplaceToken routine 30
9 CLAUSE: Find the Noun Clause Boundaries 30
9.1 Introduction e e 30
9.2 How it screens... e e e e e 31
9.3 Update: New Matches... e 33
10 ORPHAN-MERGE: Fix What Is Broken 34
10.1 Introduction L e 34
10.2 Fixing Orphans with ORPHAN-MERGE 35
10.3 Clearing up Ambiguity L 35
10.4 ACLAUSE-WIN e 36
10.5 Using CLAUSE-COPY e 36
10.6 CLAUSE-ADD e 37
10.7 Update: New changes of ORPHAN-MERGE 37
10.8 Update: New ACLAUSE-WIN expands its options 40
10.9 Update: NCLAUSE-WIN e 40
10.10Update: New version of CLAUSE-COPY 40
11 SYNTAX-CHECK: Find Correct Syntax Entry 41
11.1 Introduction L e e e e 41
11.2 Hierarchy of Matching 41
11.3 GWIM (Get What I Mean) i 42
11.4 ORPHAN: Creating an Orphaned Command 43
11.5 Update: SYNTAX-CHECK 44
11.6 Update: New versions of GWIM 45
11.7 Update: New versions of ORPHAN 45

Contents

12 Getting Objects with SNARF-OBJECTS 45
12.1 Introductiono 46
12.2 Setting up Routines L 46
12.3 SNARFEM: Looking for Groups of Objects 46
124 BUT-MERGE e 47
12.5 Getting Object Numbers for each Object with GET-OBJECT 47
12.6 Bug: Randomly Picking Objects 48
12.7 Update: New versions of SNARF-OBJECTS 49
12.8 Update: New versions of SNARFEM 49
12.9 Update: New BUT-MERGE 49
12.10Update: New ways to GET-OBJECT 50

13 Search for Objects using SEARCH-LIST 51
13.1 Introduction e e e 51
13.2 SEARCH-LIST: Finding Objects in Room and on Winner 51
13.3 DO-SL: Find Objects Based Upon Search Level 52
13.4 GLOBAL-CHECK: Look for Objects Everywhere 52
13.5 THIS-IT? e s e e 53
13.6 Update: New version of SEARCH-LIST 53
13.7 Update: New version of GLOBAL-CHECK 53
13.8 Update: New version of THIS-IT? 54
13.9 Update: NOT-HERE-OBJECT 54
13.10Update: MOBY-FIND 54

14 Can Many Objects be TAKEn Before Using with TAKE-CHECK and MANY-CHECK 55

14.1 Introduction L 55
14.2 TTAKE-CHECK (through TAKE-CHECK): Checking TAKE and HAVE bits 55
14.3 Update: New ITAKE-CHECK 56
144 MANY-CHECK e e e e e e 56
15 It's Time to Perform with PERFORM 57
15.1 Introduction e e e 57
15.2 Checks and Order 57
15.3 THIS-IS-IT . o o o o 58
16 Pardon the Interruptions 59
16.1 Introduction 59
16.2 Creating and Storing interrupts with INT 29
16.3 QUEUE - Setting Up the Interrupts 60
16.4 CLOCKER - Running Interrupts 60
16.5 What about DEMONS? 61
16.6 Update: New INT and Interrupt Entry 61
16.7 Update: New CLOCKER e 62
16.8 Removing Interrupts with DEQUEUE 62
16.9 New Predicates for the Interrupts Lo 63
17 Basic Screen Output and TELL 63
17.1 Introduction 63
17.2 Abbreviations / Frequent words table oo 0 0L 63
17.3 Special PRINT Routines - WORD-PRINT, CLAUSE-PRINT, PREP-PRINT 64
17.4 New versions PRINT routines 64

Contents

17.5 Error message routineso e e e 65
17.6 Using the TELL Macro o 65
18 The Describers - For Rooms and Objects 65
18.1 Introduction L L e e e e 65
18.2 PRINT-CONT e e e 65
18.3 DESCRIBE-OBJECT 66
18.4 DESCRIBE-OBJECTS 66
18.5 DESCRIBE-ROOM e 66
18.6 PRINT-CONTENTS e e s e 67
18.7 Update: DESCRIBE-ROOM 67
19 Common Routines and Predicates 67
19.1 Introduction 67
19.2 Table Routines and Predicates, 67
19.3 Object Predicates e 68
19.4 Object Routines 70
19.5 Game State Routines and Predicates 70
19.6 Movement Routines e e 71
20 Conclusion - The End 72
Appendix A: Story Headers 72
Appendix B: Attributes and Properties From “Learning ZIL" 75
Appendix C: Object Attributes and Properties in Zork 1 80

1 ZIL, ZILCH, ZAP, and ZIP

Introduction

Decades ago, Infocom was synonymous with good storytelling and creative puzzles. It wasn’t the first
company to release a text interactive fiction game, but its first release, Zork I, made it the flagbearer
for all other IF games to follow. Infocom took over the personal computer market for interactive
fiction games by having their games programmed in ZIL (Zork Implementation Language) which is a
compact language that easily handled text and object structures. ZIL programs were compiled into
Z-code, an assembly code that would run on a “Z-machine”. Infocom created multiple Z-machine
emulators (AKA Zork Interpreter Program or ZIP) to run on various computers especially home
computers like the TSR-80, Apple II, and Commodore 64. Such an approach allowed a single
program to be run on different computers without having to create a separate program for each
machine.

Buried in these ZIL programs were the basic structure of how an Infocom game is organized and
executed. And it was Infocom’s parser which could understand complex commands with such a
small amount of code that seemed miraculous to IF fans. The inner workings of Infocom games
remained a mystery until reverse engineering was done that decoded the Z-code format. Much of
the knowledge about Z-code was documented in the Z-Machine Standards Document by Graham
Nelson and Mark Howell. In this, the Z-code instructions and data structure used by some of those
instructions (like Vocabulary by read or objects by get_prop) tables were described. As it was
a general document, other data structures specific to Infocom games like verb syntaxes were not
mentioned. Several excellent utilities (infodump by Mark Howell and ZILF by Jesse McGrew and
Josh Lawren) have helped provide more insight on the data structures of Infocom games. Utilities to
translate the Z-code to a more easily readable format did help show the inner routines of the games.
Without variable names, attribute references, and object property names, making sense of the game
code remained difficult. An internal Infocom use only document, “ Learning ZIL - or - Everything You
Always Wanted to Know About Writing Interactive Fiction But Couldn’t Find Anyone Still Working
Here to Ask”, gave basic details about the how the games run and how the syntax parts of the game
were designed in ZIL. The release of an MDL-based Zork source code did offer more insight into
the inner workings of the original Zork game, but understanding MDL was an added barrier. While
there are basic parsing and command processing algorithms in the MDL-version of Zork, they were
significantly changed when translated to the microcomputer versions. The release of the Mini-Zork
source code and other tidbits from the Infocom cabinet helped unmask and clarify the game code
and the coding process that are essential to all Infocom games.

This blog will describe those hidden details of Infocom games, using Zork 1 as the base. It will also
provide some of the modifications made to these core routines by specific Infocom games. Subsequent
post will provide the inner puzzle workings in all Infocom games. Only the text games will be used.
None of the graphics based games are analyzed.

All routine and variable names in the Infocom source code (Mini-Zork) and documentation are in
all capital letters. Game names are in bold. Unnamed variables and routines are given names that
are a best guess.

Apologizes for any errors in these posts. They’ll be fixed if possible.

1 ZIL, ZILCH, ZAP, and ZIP

1.1 Introduction

ZIL is a derivative of MDL (MIT Design Language), a LISP-like language, with a minimal set of
instructions needed to created TF games. The Infocom game files created from ZIL source code were
run through the ZIL compiler (ZILCH) to create Z assembly language code. This assembly code
was then sent through the Z Assembler Program (ZAP) to create the actual Z-code. No copies of

6

1.2 ZIP versions 1

ZILCH or ZAP software have ever been released or leaked to the public. There is also very little
documentation about these programs. The Infocom Cabinet files only mentions some compilation
flags used in ZILCH and the basic function of ZAP. The final Z-code could be run on a “Z-machine”
or any computer that emulated one using a Zork Interpreter Program (ZIP). Different ZIP versions
have different memory and processing requirements. All have frequently used and writable data in
their “core” memory which enables quicker execution of the program. Less used and read-only data
is read from a storage medium (file or disk) on an as needed basis.

Throughout the history of Infocom, six versions of the Z-code were recreated, but only the first 5
were used for text-only games.

1.2 ZIP versions 1

Many of the Z-code instructions used in Infocom games are in this first version of ZIP. It is unclear
what the memory requirements are for it though. Only one ZIP 1 game, Zork 1, was ever released
by Infocom.

1.3 ZIP version 2

ZIP 2 was used to create Zork 1-R15 and the first version of Zork 2. It introduced frequent
words (AKA abbreviations) and a new header element (serial number) which is just a 6 digit ASCII
representation of the release date in year-month-day format.

1.4 ZIP version 3

Version 3 was used to create a majority of the Infocom games. Infocom documents indicates the
version 3 compatible ZIP should have a minimum of 40K (maybe 32K) of core memory and a floppy
drive with at least 80K of storage. Due to limitations to the ZIP 3 format, the maximum size game
file is 128K. Also the response time should be a few seconds for the average command.

Deadline would be the first new game using this version. This version increased the number of
abbreviations and added more output functions. Even after ZIP 4 and 5 were introduced, Infocom
would produce 24 games using ZIP 3.

For outputs, ZIP 3 compatible programs had 2 or 3 “windows” where text could be displayed instead
of 1in ZIP 1 and 2. One of these, the status bar is not usually used unless a special flag bit is set
in the header. Most games create the status bar in the main or lower, window(0). Two additional
output streams were created. One “streams” the text into a specified memory block. The other was
called a command script which recorded the input and output of the game.

Finally, game verification was added by adding a file length and checksum into the header. The
VERIFY command would check the game data file against these values.

1.5 Enhanced ZIP (EZIP), version 4

Version 4, renamed Enhanced ZIP (EZIP), was introduced with A Mind Forever Voyaging. A
smaller version of EZIP was apparently created called, LZIP, or lower-case EZIP for computers with
memory limitations. The minimal hardware requirements for EZIP were at least 128 KB of memory
and a single disk drive that can at least access 140KB. The computer system needs to have upper
and lower case characters and a screen to display 80 characters across with at least 14 lines. These
requirements would allow games to only take a few seconds to complete a typical “go” command.
The maximum size game file is 256K.

EZIP increased the memory space to allow more objects and rooms along with longer words (up
to 9 characters) in the vocabulary. Several new Z-code operands also simplified some of the table-

7

2 (eneral structure of Infocom Games and Data Structures

related coding for these games, offered more ways to call routines, and gave more control to how text
displayed on the screen by dividing it up into various windows.

The specs of EZIP limited these games to an IBM PC, Macintosh, enhanced Apple //e, C128, Amiga,
and Atari ST. Four games were released using this. No known LZIP version of games seem to exist.

1.6 Extended ZIP (XZIP), version 5

Introduced with Beyond Zork, version 5 (XZIP) allowed for games with more objects and rooms and
added more opcodes for routine calling, text, and table manipulations. Borderzone and Sherlock
would be the only other new games to use this version. Infocom would release its Solid Goal (AKA
Greatest Hits) series which were re-releases of past popular games but in the XZIP compatible format.
However these games did not utilize the added functionality of XZIP.

1.7 YZIP, version 6

YZIP (successor to XZIP) is version 6 which mainly added mouse, graphical windows, and menu
functions with Z-codes. The graphical based Infocom games used this version and will not be
discussed.

2 General structure of Infocom Games and Data Structures

2.1 Introduction and Story Headers

Since version 1 of ZIP, the story header is a fixed 64 bytes at the start of every Infocom game that
provides information regarding the location of specific data and code. The header for ZIP 1 games
used the first 9 words/18 bytes. Subsequent ZIP versions would add more values into the header.
XZIP (Version 5) would use all 32 words (64 bytes).

The original story header information about the game and addresses to specific types of data. Details
are in Appendix A. The first word, ZVERSION, ensures that the ZIP is compatible with the given
story file and emulates the proper Z-machine version. The version number is located in the first byte.
The second byte has the mode flags which are set by the ZAP assembler (for bits 0 and 1) and the
ZIP at startup for the remaining bits. START address will be the first operation to be executed by
the ZIP. Tt points to the first instruction and not the start of the routine. The next three addresses
are used by the various instructions. All the object-related operators use the address in OBJECT to
manipulate the object data. The READ instruction uses the Vocabulary data at VOCAB to match
and tokenize the characters in the input buffer. GLOBALS points to the table holding the global
variables data.

Z1P 1 Story Header:

Other information would be added to the story header with newer ZIP versions. The complete layout
is in Appendix A.

2.2 The Memory Layout of Infocom Games

The layout of data in the Infocom game files is fairly consistent between games. An example using
Zork 1 is shown below. The “memory” of the emulated Z-machine is first loaded with the header
information starting at $0000. Memory from $0000 up to PURBOT encompasses the writeable
memory such as variables, objects, tables, and buffers. Data after PURBOT is read-only data such
as syntax data, routines, preposition data, and strings. The exact locations of the syntax data, action
routines, and preposition table are stored in global variables, not the header. The ZIP will continue
to load data into memory. All data up to the address in ENDLOD must be loaded. The ZIP may

8

2.3 The Massive Object Table

] Word \ Name \ Function

Byte 0: Z-machine version
00 ZVERSION Byte 1: Z-machine mode

01 ZORKID Release number

02 ENDLOD End address of pre-loaded memory, start of variable (or exchangeable memory)

03 START Address of first instruction (not routine), Program Counter

04 VOCAB Address to Vocabulary table

05 OBJECT Address to Object data

06 GLOBALS | Address to Global Variable table

07 PURBOT | Start address of read-only (static) memory

Table 1: ZIP 1 Story Header

decide to load data past ENDLOD at its discretion. All data after ENDLOD can be swapped out
with other disk-based data as needed. Usually routines and strings are the data that is swapped. All
important and quickly accessible data remains resident in memory below the ENDLOD address. A
sample layout of data structure in Zork 1 gives more details (using infodump):

Base End ©Size

0000 3F 40 Story file header

0040 7D 3D Objects - Property Defaults (Address at OBJECTS, word 5)
007E 974 935 Objects - Entries

0975 203A 16C6 Objects - Property data

203B 221A 1EO Global Variables (Address at GLOBALS, word 6)

221B 2C28 AOE Misc Data (such as tables and buffers)

2C29 2CFE D6 Syntax - Pointer table (Address at PURBOT)

2CFF 33d4 6D6 Syntax - Entries (referred by the Pointer Table)

33D5 34b6 E2 Action routine table (Address in global variables)
34B7 3598 E2 Pre-action routine table (Address in global variables)
3599 35DE 46 Preposition table (Address in global variables)

35DF 46CA 10EC Vocabulary (Address at VOCAB, word 4)

46CC EDC5 A6FA Routines (Load up to ENDLOD, $5DEC here)

EDC6 14328 5563 Strings

14329 143FF D7 Empty (fill up to the end of memory page)

2.3 The Massive Object Table

Objects are the heart of the Infocom games and are the first data after the story header. Storing
them in a logical and efficient manner for the game to access is important. Fach object contains
information such as the name, properties and attributes. It will also have a parent and possibly
siblings. The object’s parent is usually a room or container that contains the object. Siblings are
objects that are in the same room or container. Rooms are also considered objects and have a
generic ROOMS object as the parent for all rooms. Attributes are true/false bits that set various
characteristics of an object such as is it takable (TAKEBIT) or a source of fire (FLAMEBIT). They
are numbered 0 to 31. Each object will define all the attributes. Properties are like attributes but
hold groups of bytes instead of a bit. The maximum size for a property is 8 bytes. If no property is
given for an object, the default property value (a word) is used. Properties are numbered 1 to 31.
Objects are numbered from 1 to 255.

2 (eneral structure of Infocom Games and Data Structures

e Default Property Table:

— 31 words that are the default property values if it is not explicit set for a specific object

e Object Entries - repeated for all objects

— 4 bytes representing the 32 attribute bits (#0=top bit of byte 0, #31=bottom bit of byte
3)

— 1 byte each for object number of the parent, sibling, and child of the object
— 1 word address to that object’s property table

e Property Table - repeated for all objects with their own property table
— 1 byte for size of the object name in words
— Z-string of the object name
— 1 byte for property info (LLLNNNNN)
* bits 5-7 = length of property-1 (length 1-8 bytes is represented as 0-7)
x bits 0-4 = property number

1-8 bytes of property data

— The 1 byte property info and 1-8 property data are repeated for each property, listed in
descending order

Example object property table:

(TBD)

The meaning of an attribute or property number is consistent in all objects in that game but not
consistent between games. For example. the attribute bit and properties used in Zork 1 are listed
in Appendices B and C. The number of objects is not specifically stored here but calculated based
upon the number of object entries. It can also be calculated by the difference between the addresses
of the first object entry and first property table entry divided by 9 bytes for each entry.

2.4 Global Variables

The section following the objects is a 480 byte block corresponding to 240 global variables with each
holding a word. By default in Infocom version 1-3 games, variable 0 contains the object number of
the player’s current location. Variable 1 is the score while variable 2 is the number of turns or game
time. A game does not need to use all 240 global variables and can use part of this memory block
for other variable data such as tables and buffers. The addresses to these other data structures as
well as addresses to specialized grammar structures like syntax entries, preposition table, and action
routine table are typically stored in global variables.

2.5 Tables and Buffers

Between the last global variable and the start of the static data (at PURBOT), there is usually extra
memory that is used to store custom data structures. These are typical tables and buffers. Tables
are a fixed set of words where the first word (element 0) contains the number of elements in the
table. Examples include tables to hold the direct or indirect object numbers. A buffer is just a fixed
set of bytes used to hold any type of data. The most common buffers used in Infocom games are
the input buffer (INBUF) or token buffer (LEXV). These data structures are not standard to ZIL
and are specific to Infocom games. For ZIP 1-3 games, these tables are located in the preloaded
memory of the computer. For EZIP and XZIP games, tables can also be located amongst the game

10

routines. The addresses to these buffers and tables are usually stored in specific global variables but
can sometimes be hardcoded into the routines that use them. If a game does not need all 240 global
variables, the space for those unused variables can be used for buffers and tables. Infocom games
have their own custom ZIL routines for reading and writing to these structures.

3 Syntax Entries - The Biggest Mystery of them All

3.1 Introduction

Probably the most innovative part of Infocom games were their ability to understand commands
written in conversational English. The different types of grammar information were discussed in the
“Learning ZIL” document. The structure of syntax entries in ZIL was shown, but the layout in the
Z-code files was not mentioned. Infodump and ZILF do provide some extra information about the
syntax structure. There are 3 additional grammar-related data blocks in the game not mentioned in
the header: prepositions, syntax pointer table, and syntax entries.

3.2 Prepositions

There is a separate table of prepositions to speed up the syntax matching process.
e 1 byte for number of prepositions
e 2 word entries: address of preposition in vocabulary and preposition number

The prepositions are numbered from SFF and decrease. The address to this table is stored as a global
variable. EZIP and XZIP use a compact form of the Preposition table that used a byte instead of a
word for the preposition ID number.

3.3 Syntax Entry Pointer Table

The syntax entries are probably the most confusing part of Infocom games thanks to the lack of
documentation. They provide the syntax structure for a particular action. To find the matching
syntax entry, the verb number is needed. Since verbs can have synonyms, different verbs can have
the same verb number like “GET” and “TAKE”. So they would use the same syntax entries. The
syntax entry table lists the address where the group of syntax entries for that specific verb number is
located. This table is just a block of addresses with verb number $FF is the first address. Subsequent
addresses correspond to smaller verb numbers.

3.4 Syntax Entries

PARSER will then look through each of the syntax entries for the matched verb number and return
the entry that best completely matches the given (if any) prepositions and noun clauses types. For
example, the syntax entry table for verb number $F3 (or GET) has 7 different syntax entries. The
syntaxes of “GET object”, “GET object from object”, and “GET on object” would correspond to
3 different entries. To store this grammatical information, this group of entries start with a byte
indicating how many entries for that verb. It is followed by multiple 8 byte entries for all acceptable
grammatical combinations:

11

3 Syntax Entries - The Biggest Mystery of them All

] Byte \ Contents ‘

Number of object clauses

Prep number for direct object

Prep number for indirect object
GWIMBIT number for direct object
GWIMBIT number for indirect object
LOC byte for direct object

LOC byte for indirect object

Action Number

S| O = W N~ O

3.5 Get What | Mean (GWIM) Feature

The GWIMBIT number is used in the FIND feature mentioned in section 9.5 of “Learning ZIL” to
find unspecified but necessary objects in a command. PARSER will attempt to find an object in
the current location with a set attribute flag corresponding to the GWIMBIT number. If only one
object is found to match, it will assume the user meant that object and use it in the given command.
If no object or more than one object matches, PARSER will ask for clarification (called orphaning).
The player can then give a clarifying answer without retyping the entire previous command or type
a completely new command.

For example, the syntax entry for “IGNITE OBJ WITH OBJ” has a GWIMBIT number for the
indirect object set to the FLAME bit. If that entry is the best syntax match the command “IGNITE
TORCH?”, the indirect object is still missing. PARSER will try to find an object with the FLAME bit
set to use as the indirect object. If a an object in the current location has the FLAME bit set (like
a lantern), PARSER will assume the indirect object is the lantern. The command will then assume
to be “IGNITE TORCH WITH LANTERN” and the indirect object will be set to LANTERN.

3.6 Location Restriction of Objects

The LOC byte is probably the most mysterious value in the syntax entry. The highest 7 bits indicate
how PARSER searches and checks on requested objects. For example, PARSER will not complete an
action with an object on the ground if its syntax entry requires an object be held or carried. While
“Learning ZIL” has listed 9 possible properties, the source code for Mini-Zork indicates only 7 are
used through version 3:

Bit7 | Bit6 | Bits | Bit4 Bit3 | Bit2 | Bitl [Bit0
Location-related Flags Possession-related Flags

$80 $40 $20 $10 $08 $04 $02 $01

HELD CARRIED ON- IN-ROOM TAKE MANY HAVE Not used
GROUND
At top level Not at top At top level Not at top Will Multiple Must already

and not level, of a room level, automatically objects are be in the

inside contained and not contained TAKE object allowed for a user’s

another inside inside inside in the current particular possession
container another another another location if action

object container object on the necessary
ground before using
it

When the GWIM feature tries to search for an unspecified objected, that routine needs to know how
far to search. This is indicated by the flags for HELD, CARRIED, IN-ROOM, and ON-GROUND
which guide how the function, SEARCH-LIST, finds objects in the given location (a room or the
user). More details will be given in section 13.2.

12

3.7 Pre-actions and Actions

“Learning ZIL” does mention an EVERYWHERE and ADJACENT option, but there is no evidence
that they were ever used in version 1-5 games as confirmed by the internal Infocom documents on
ZIL. Tt could’ve been used in the graphical YZIP- based games.

3.7 Pre-actions and Actions

The action number is used to look up the routine address from the ACTION and PRE-ACTION
tables. These tables sequentially list the packed addresses with any reference table. All syntaxes
that refer to a similar action (INSERT DOWN object, DROP object, and SPILL object IN object)
will use the same action number. INSERT object ON object and INSERT object UNDER object
use two different action numbers as the game processes these actions differently. The action number
is also used to lookup the address for the pre-action routine if one exists (if not, $0000 is used). A
pre-action routine can check the objects, variables, or game status before a particular action routine
is called. The same pre-action routine can be used with different action routines.

3.8 An Example

Multiple verbs have the same verb number such as CARRY, GET, and TAKE in this example. The
verb number will then correspond a group of syntax entries. Here only 3 are used:

[02 00 fO 11 00 64 00 39] "carry OBJ from OBJ"
[01 £9 00 00 00 00 00 31] "carry out OBJ"
[01 00 00 11 00 34 00 39] "carry 0OBJ"

In the first example, the $02, indicates two noun clauses required for that syntax. The next two bytes
indicate the required prepositions for the noun clauses. The $00 indicates no preposition before the
direct object clause. The $F0 refers to the preposition for the indirect object clause, FROM in this
case. The GWIMBIT number $11 is the attribute to check on objects if the direct object is missing.
There is no GWIMBIT number for the indirect object. The direct object LOC byte $64 indicates
the direct object should be CARRIED or ON-GROUND. Also, multiple objects can be in the direct
object clause. In the second example, the OUT preposition is needed before the direct object. In the
third example, the direct object LOC byte $34 indicates the direct object needs to be ON-GROUND
or IN-ROOM. The last value ($39 or $31) is the action number which indicates what specific routine
to execute for that command. Since the first and third examples are very similar, the same routine
will be used for both types of commands.

3.9 Update: Compact Syntaxes to Save Space

A variable sized syntax entry format was used only with Sherlock to help save space. There are 3
sizes for the syntax entries based upon the number of noun clauses. The format is described below.
The preposition number is stored in the lower 6 bits (after subtracting $C0/192 from the preposition
number) of bytes 0 and 3.

13

4 Execution of Infocom Games - An Overview

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
No # of objects (high | Action --- --- --- --- ---
objects 2 bits) / Prep ID Number

(low 6 bits)
Only # of objects (high | GWIMBITLOC Action --- --- ---
direct 2 bits) / Prep ID byte byte Number
object (low 6 bits)
Direct # of objects (high GWIMBITLOC Prep ID | GWIMBITLOC Action
and 2 bits) / Prep ID byte byte (low 6 byte byte Number
indirect (low 6 bits) bits)
objects

4 Execution of Infocom Games - An Overview

4.1 Introduction

For all of their perceived complexity, Infocom games have a fairly straightforward and consistent
method of getting player commands, parsing them, and executing them quickly. Each game would
start with initial setting of global variables and interrupts. This loop starts with PARSER getting
a command. It will then check and extract all needed grammatical information. The game will use
PERFORM to call an action on the various objects in that command. CLOCKER will check and
executed any interrupts if necessary. Finally, the program repeats this indefinitely or the game stops.
Each game used the same basic code from initialization of the game through handling interrupts. The
repeated use of previous code help minimize new bugs and kept the play of the games consistent. But
every game had some kind of new code which could introduce bugs. The description of these main
backbone routines will be from the original Zork 1 game from 1979. Information about updates to
these routines will then follow each section.

4.2 Initialization with GO

Initialization of each game begins with the GO routine which performs (at least) four required tasks:
e Set important game variables like object number for WINNER or starting location
e Set any interrupt routines
e Display the version information of the game
e Execute the LOOK command for the starting location

The game then moves to the MAIN-LOOP.

4.3 Heart Beat of the Game with MAIN-LOOP

The game will repeatedly get new commands and execute them in an indefinite loop, the MAIN-
LOOP. The commands are obtained and parsed using PARSER which returns the action, direct
objects, and indirect objects referenced by the given command. This loop will then call PERFORM
to execute the given action on all the direct and indirect objects. The turn of the loop will end by
calling CLOCKER which executes any necessary interrupts. MAIN-LOOP will then repeat all of
these steps indefinitely.

14

4.4 Understanding the User with PARSER

4.4 Understanding the User with PARSER

PARSER takes the player’s input or any remaining input from the last command and extracts the
parts of command: verb, direct object, and indirect object. The part of speech of tokens are identified
and later used by CLAUSE to find the start and end of object clauses.

4.5 Completing Previous Command with ORPHAN-MERGE

If a previous command was orphaned, the given command is examined to by ORPHAN-MERGE
to see if it supplies the missing information from the orphaned command. If so, then ORPHAN-
MERGE combines the new information with the previous command. PARSER continues to process
this fixed command just like any other command.

4.6 Match the Command with SYNTAX-CHECK

The use of syntax templates allowed Infocom games to understand multiple commands using similar
tokens but in different orders. After PARSER identifies the verb, direct object, and indirect object,
SYNTAX-CHECK will try to match a syntax template to the given verb, prepositions, and objects.
The action with the matched syntax template is returned. If the best matched syntax template still
has missing objects, the game will attempt to supply them with objects in the current location.

4.7 Find the Objects with SNARF-OBJECT

After the matching syntax template and objects are verified, the game will process each object clause
and match the objects with objects from the game. It will also handle modifiers like EXCEPT and
quantities like ALL.

4.8 Final check on Objects with TAKE-CHECK and MANY-CHECK

The game will also confirm if the objects need to be taken first (TAKE-CHECK) and if multiple
objects are allowed for the action (MANY-CHECK). Once all the checks are completed, the game
creates a table of all the objects that are referred in each object clause.

4.9 Call the Actions with PERFORM

Finally, the game will execute the requested action (PRSA) on the given direct (PRSO) and indirect
(PRSI) objects with PERFORM. If one noun clause has one object but the other has multiple, the
game will cycle through the clause with the multiple objects and use the same object for the other
clause. However, if both clauses have multiple objects, only the direct objects will be cycled. Only
the first indirect object will be used.

4.10 Tick the CLOCKER

After the player command(s) are performed, the game’s interrupt system “ticks”. Any interrupt
whose tick count reaches 1 will have its associated routine called and then become disabled.

4.11 Graphic representation of Game Flow

Routine layout for Zork 1. Dotted lines indicate the order of function calls by MAIN-LOOP.

15

5 GO - Gentlemen, Start Your Engines!

[SEEENEEI. - E_h
L
: ™~

L # BUT-MERGE

—— SMARF-OBJECTS < V DO-8L — SEARCH-LIST —= THISAT?

* SNARFEM + GET-OBJECTS 4

 wawomeok

GLOBAL- CHECK

Figure 1: Routine Layout for Zork 1

5 GO - Gentlemen, Start Your Engines!

Arguments: None

Return: None

5.1 Introduction

Every Infocom game begins with an initialization routine, GO, that sets certain variables and executes
specific routines. It will then jump into the MAIN-LOOP which will indefinitely ask for commands
from the user and process them.

5.2 Running GO

All Infocom games have the similar initialization routine for each game. “Learning ZIL” mentions
that the GO routine should:

e Set special global variables
e Set interrupts, usually with the QUEUE or INT routines

e Display an opening text/title screen

16

e Call V-VERSION to show copyright information, release number, and serial number
e Call V-LOOK to describe the current location
e Call the MAIN-LOOP

The important global variables that are set include WINNER (object number for current active actor
which is usually the PLAYER object), HERE (current location of the WINNER), and LIT (indicates
if the current location is lit). All version 4 (except AMFV) and 5 games will also check the width
of the screen. Some games will not execute if the screen width is too small. Infocom documentation
recommends all games start with an opening title screen and display game information before showing
the current locations description.

6 MAIN-LOOP - Heart of the Game

Arguments: None

Return: None

6.1 Introduction

MAIN-LOOP is the heart of all Infocom games and keeps the game structure orderly. It repeatedly
requests for parsed commands and loops indefinitely. MAIN-LOOP does not get modified too much
with newer games. Many of the changes were to make programming game-specific details and re-
strictions easier to do. These game changes essentially provided more checks on the player input and
provided better responses. Only significant changes to MAIN-LOOP will be later described.

6.2 The Details

MAIN-LOOP will call PARSER to ask and process a user’s command. If PARSER cannot properly
parse the command, MAIN-LOOP will continue to call PARSER to process new commands. If it has
successfully processed a command, PARSER will set PRSA (parser action) with the requested action
number (the 8th byte in a syntax entry) and fill the PRSO (parser direct object) and PRSI (parser
indirect object) tables (P-PRSO and P-PRSI) with all the direct and indirect objects requested. This
is different to what is described in “Learning ZIL”. MAIN-LOOP then loops and acts upon all the
objects:

1. Check the number of objects in the direct and indirect clauses

2. If the direct objects clause has no objects, then see if the action is GO.
a) If so, then call PERFORM with GO and the direction in PRSO.

b) If no objects are needed for the requested action, then call PERFORM on PRSA with no
objects

c) If at least 1 object clause is needed for the requested action, then print an error message.
Display a specific error message if the command is an invalid response to an orphaned
command.

3. One clause will be designated the multiple one and one clause has a constant object, first one
in the clause.

4. Call the requested action with PERFORM multiple times for each object in the multiple object
clause as while the other clause just has its first object used.

17

6 MAIN-LOOP - Heart of the Game

a) If M-END is returned, then halt the processing of multiple objects. Erase any remaining
commands.

b) If M-END is not returned, then continue looping through the multiple objects
5. Increase number of turns by 1 (even if multiple object are processed).

6. Call CLOCKER to check interrupts even if the given command was not valid. This was
later changed in Deadline and other future games to only calling CLOCKER if PARSER was
successful.

6.3 Details of Multiples of Multiples

The MAIN-LOOP handles commands with multiple objects for a given action. It will loop through
these objects and execute the same action for each object. However, there is some confusion as to how
it determines preference if two sets of objects are given. The examples below show how MAIN-LOOP
iterates through multiple objects.

Multiple Direct Objects Multiple Indirect Objects Multiple Direct and Indirect

Objects

IGNITE CANDLE AND PAPER
WITH TORCH

IGNITE CANDLE WITH
TORCH

IGNITE PAPER WITH

CUT TREE WITH AXE AND
SWORD
CUT TREE WITH AXE

CUT TREE WITH SWORD

IGNITE CANDLE AND PAPER
WITH TORCH AND FIRE

IGNITE CANDLE WITH
TORCH

IGNITE PAPER WITH

TORCH TORCH

So any additional indirect objects are ignored when there are both multiple direct and indirect
objects. MAIN-LOOP will always iterate through the direct object clause if it has the same or
more objects than the indirect clause. The indirect object remains constant (the first one in the
clause) for all iterations. The only exception is for only 1 direct object and multiple indirect objects.
MAIN-LOOP will then iterate through the indirect objects while keeping the direct object constant.

6.4 Update: Managing Global Variables

Only minor improvements were made with handling the PRSA, PRSO, and PRSI variables. Updating
the L- versions of these variables which are used by the AGAIN command was moved into the MAIN-
LOOP section starting with Zork 2. Later games would excluding updating these variables if certain
commands were used. Zork 3 added the option of checking the the LIT variable with commands
that require no objects. If it was clear, then a “It’s too dark to see” error would be given. Zork 2
(R28) also moved the updating of the IT-OBJECT and its location variable into the MAIN-LOOP
instead of PERFORM. LGOP and Plundered Hearts also added a specific check on the visibility
of the IT-OBJECT in the MAIN-LOOP.

6.5 Update: How many NOT-HERE-OBJECTs?

To generate a better user responses when some objects are missing in a command, MAIN-LOOP
(since Infidel) started to count how many requested objects in a multiple object command were not
present. This number was kept in the global P-NOT-HERE variable and used to provide a more
specific error message for missing objects. For example, if more than P-NOT-HERE was greater than
1, the error message would use “objects” instead of “object”. One final coding relic is the P-MULT
flag. Tt is cleared and set in the MAIN-LOOP, but has been used only in Infidel’s NOT-HERE-
OBJECT ACTION routine. All subsequent ZIP 3 games since Infidel still set this flag, but it is

18

6.6 Update: Checking For Invalid Exceptions

never used. It is also present in various developmental versions but not used. Its true function
remains unclear.

6.6 Update: Checking For Invalid Exceptions

Starting with Deadline, MAIN-LOOP would check for specific invalid situation where an action
should not be done on a specific object. Deadline ensured that none of the referred objects in a
command was the WINNER. Planetfall had its own special check on objects used with “PICK UP”
by making sure the PRSO was on/in PRSI. If not, it would skip over that PRSO.

Wishbringer (R69) would be the first game to check for these exceptions in a separate routine
instead of in MAIN-LOOP. It would be called whenever the GETFLAG mode in the game is set to
ALL. MAIN-LOOP will iterate through each object in a multiple object clause and check it for any
invalid exceptions exits before sending it off to PERFORM. If an invalid exception exists, PERFORM
will be skipped. This CheckException routine usually looks for the actions that require the object
be held or local such as DROP or INSERT. If that command is being used, the routine will see if
the proper attributes are set (TAKEN, for example), held by the WINNER, or not already inserted
for example. Every game since Wishbringer has such a routine.

7 PARSER: How Now Brown Cow

(Part 1) - Data Structures

Arguments: None

Result: TRUE if command is valid, FALSE if command is not valid

7.1 Introduction

Probably the most intrigue feature of Infocom games has always been the parser. The minimal online
documentation touched only on the features of PARSER but never the mechanism behind PARSER.
Since Zork 1, the general approach to parsing has been relatively unchanged with successive Infocom
games. Improvements were made, but they mainly expanded the syntaxes that the game would
understand. Many games have special commands or ways to interact with the PLAYER that results
in modifications in PARSER. Finally, the first EZIP game, AMFV, added new parser commands
like OOPS.

7.2 Characters vs. Tokens

The ZIP language’s READ routine will take a sequence of characters and store it in the input buffer
(INBUF). The first byte in that buffer has the number of characters in the input. The input ends
with a zero byte and does not include the terminating character like a carriage return. READ will
then match words in the input buffer to those in the game’s vocabulary and create a separate buffer
of values corresponding to the matched words (called tokenizing). Words are separated by a space
or designated separator characters stored in the vocabulary. For each word, a 4 byte block is created
from three pieces of information for each token. First, the Z-string of the word is created and matched
to the words in the vocabulary. All ZIP 1 to 3 games were limited to the first six characters of a
word. ZIP 4 and 5 could use up to nine characters. If a match is found, the address of that word in
the vocabulary table is saved in the first two bytes of the block. If no match is found, 0 is used. The
third byte in the block will be the length of the token. The last byte is the offset from the start of
the input buffer. The token buffer (LEXV) starts with two bytes. The first byte in the token buffer

19

7 PARSER: How Now Brown Cow

is the maximum number of tokens allowed. The second byte is the actual number of tokens in the
buffer. The rest of the token buffer are groups of 4 byte token data blocks to represent the words in
the input.

IGNITE TORCH WITH MATCH
INBUF:15 63676E63746520746F72636820776097478206D6174636800

,f f f
of chars ' I|I F,
in buffer / | \
Max # of tokens Address of token |I I|
allowed in Vocabulary '

N
wexv: 14 0 w—im

of tukans # of cha rs F'c::mter o
in buffer intoken location in
INBUF

Figure 2: INBUF and LEXV

7.3 PARSER Variables and Grammatical Structure Definitions

In “The Parser’s Role” section of “Learning ZIL”, PARSER takes the input and tries to identify the
action number for PRSA and the object numbers for PRSO (parser direct object) and PRSI (parser
indirect object). This is not quite correct. It will set PRSA with the action referred by the verb in
the input. However, PARSER does not set PRSO or PRSI. The only exception is if the PRSA is
GO. Then the PRSO is set to the exit direction. The routine actually fills two tables (P-PRSO and
P-PRSI) with all the direct and indirect objects requested in the command.

The basic grammar structure for a command is:

verb + prep + noun clause + prep + noun clause + end-of-command +
verb + prep + noun clause + prep + noun clause + end-of-command

Only the verb is required. All other parts are optional. A noun clause is a noun or set of nouns
connected by conjunctions (AND or commas). These nouns can be modified by adjectives, quantifiers
(ALL, A, or ONE), or other special tokens excluding prepositions (OF, BUT, or EXCEPT). The
entire noun clause is referred as a direct or indirect object clause. Prepositions are not included in
the noun clause.

For example:

DROP THE YELLOW BALL AND CROWBAR
INSERT A DOLLAR INTO THE RED SLOT
TAKE ALL EXCEPT THE CANDLES

THE YELLOW BALL AND CROWBAR, A DOLLAR, THE RED SLOT, and ALL EXCEPT THE CANDLES are the
noun clauses.

Individual commands can be connected together with end-of-command tokens (THEN, AND, , or
periods) that indicate where a command stops. So:

DROP THE YELLOW BALL AND TAKE THE CROWBAR
DROP THE YELLOW BALL. TAKE THE CROWBAR

are equivalent to

DROP THE YELLOW BALL THEN TAKE THE CROWBAR

20

7.4 PARSER Table (ITBL)

Commas can separate multiple objects in a single noun clause or indicate the start of a new command.
So:

DROP THE BALL, A RAKE AND SHOVEL
DROP THE BALL, TAKE THE SHOVEL

are processed differently based upon word type after the comma. More in the details below.

7.4 PARSER Table (ITBL)

The main goal of PARSER is to extract the action (PRSA) and valid objects in the direct and indirect
object clauses from the given command. To assist other routines in extracting this information,

PARSER will store specific information related to the verb, prepositions, and location of noun clauses
in a 10 word table, ITBL:

Word 0 | Verb Number (VERB)

Word 1 | Verb Table Address (VERBN)

Word 2 | Prep Number (PREP1)

Word 3 | Addr of Prep (PREPIN)

Word 4 | Prep Number (PREP2)

Word 5 | Addr of Prep (PREP2N)

Word 6 | Start Addr of Direct Clause (NC1)
Word 7 | End Addr of Direct Clause (NC1L)
Word 8 | Start Addr of Indirect Clause (NC2)
Word 9 | End Addr of Indirect Clause (NC2L)

The verb number is a unique value for similar meaning verbs in the vocabulary. It is not the same
as the action number. A verb will have the same verb number no matter the context of its use but it
could have a different action number. For example, LOOK has the verb number $E9 in all syntaxes,
but the action number for LOOK FOR is $2D, LOOK IN is $3F, and LOOK is $D0 corresponding
to different types of actions. The verb table contains the same information about the verb as in the
token buffer: verb’s address (in Vocabulary), length, and location in the input buffer (INBUF). The
start and end addresses of a clause refer to locations in the token buffer (LEXV). Of note, this end
address actually points to the token AFTER the last included token in the particular clause.

LEXV: 14 04 |8D6F0601 |[BC020508] 8S3T2040€ 90F40511| 0000000
4 H

| | T T
start address of End address of Start address of End address of
direct clause direct clause indirect clause indirect clause

Figure 3: Parser Table

7.5 Checking Word Types with WT?
Arguments (Address, word type to match, word type to return)

Return ID value or FALSE if no match

WT? is one of the most important routines in Infocom games and sees if the Vocabulary entry at the
given address has the given word type. This is the primary word type as described in Section 2.6.
If the primary word type does not match the given word type, WT? returns with FALSE. If there
is a match, the result returned depends on the third argument. If no third argument is given, the
routine will return TRUE. If the third argument matches the secondary word type (as described in

21

7 PARSER: How Now Brown Cow

Section 2.6), then the secondary ID is returned. Otherwise, the primary ID is returned regardless if

it is a valid word type for the primary ID.

Primary word type Secondary word type
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$80 $40 $20 $10 $08 $04 $02 = $00 =
Adjective Noun
Noun Verb Adjective | Direction | Preposition Special $03 = $01 =
Direction Verb
Using:

$4386:3A 6B C4 D9 62 B5 B4

the first 4 bytes are the z-string for “inflat”. $62 indicates it is an verb and adjective. So,

CALL WT?($4386, $40 or $20) will return TRUE

CALL WT?($4386, $40 or $20, $02) will return the secondary ID of $B5.

CALL WT?($4386, $40 or $20, $00 or $01 or $03) will return the primary ID of $B4.
CALL WT?($4386, $10) will return FALSE as there is no match.

Infocom games interestingly do not put the special ID values for directions, verbs, or adjectives as
the primary ID value when those tokens only have one word type. For example, the Vocabulary
entry for “search” is:

$4967:61 46 DD OD 41 EO 00

with the word type as 41 (primary type is verb, secondary type is verb). The primary ID value is
$00 though. To get the verb number ($E0), you have to access the secondary ID by using $03 as the
third argument:

CALL WT?($4967, $40, $01)

Since a third argument is needed anyways to get an ID value, the designers to just put it as the
secondary ID value.

Almost everyone game uses the same WT? routine. So games did not even use a separate routine
but just hard coded the check when needed. LGOP did add an additional word type check for
nouns, $80. If it was found, the routine would quickly exit (no value is returned for nouns) and
bypass checking for secondary word types. Sherlock uses the newer compressed Vocabulary entry
format. Since secondary word type checking happened mainly with prepositions, WT? only allowed
prepositions to be checked then when secondary word type arguments are given. This is done by
searching the Preposition table. If a match is found the preposition value is calculated based upon
the token’s position in the Preposition table. Internal Infocom notes mentions a special WT? for
The Lurking Horror where 3 ID values were stored for each token, but no evidence of this can be
found of this routine in the 3 known game releases.

(Part 2) - Scanning Tokens
7.6 Start of PARSER: Where is the command?

PARSER was able to understand single commands or multiple commands separated by “.” or THEN
by parsing them individually. It first decides if the next command should come from the previously
given input by seeing if P-CONT is set. This variable contains the starting location of the next
command’s first token from the previous input. This is set by seeing if more tokens exist after a
complete command is parsed. If P-CONT is clear, PARSER then asks for new input from the user
by printing “>” character and calling the READ opcode.

22

7.7 Now, Traverse the Tokens. ..

7.7 Now, Traverse the Tokens...

Because of the structure of accepted commands, PARSER can search for a command in an efficient
manner. [t will walk through the tokens and look for ones with specific parts of speech. If a noun
clause is found, PARSER will call another routine, CLAUSE, to find the start and end tokens for
the direct object clause. If no error is returned by CLAUSE, PARSER will continue checking tokens
and look for another noun clause (indirect object clause) or end-of-command token. The order for
checking tokens is:

1.

Invalid Token
All valid tokens have an address to their associated entry in the vocabulary. Any invalid or

unmatch tokens are given an address of $00. If this is found, an unknown-word error message
will be printed and FALSE returned.

End-of-Command Token

An end-of-command token (THEN or “”) will stop the loop and jump to the post-looping
processing. If there are more tokens, PARSER will save the position of this next token which
PARSER will use for the next command.

Direction Token

This is the only verb with its own specific check in PARSER since it is the most common
command given. A direction token has an associated direction value which is the property
number for a room’s exits in that direction. There are 4 special scenarios where this direction
value is saved and the loop is stopped:

1. This is a 1 token command, just the direction is given.

2. This is a 2 token command and the verb GO was already given (as in “GO EAST”).

3. There are more tokens after the direction, and the next token is a end-of-command token.
4. There are more tokens after the direction, and the next token is a conjunction token (AND

or 7). If so, the conjunction token is changed to “then” to indicate a new command. So a
series of direction commands separated by commas or “and” become separate commands.

PRSA is set to GO (if not already done). PRSO is later set to the direction value.

Verb Token

If a verb token is found, PARSER checks if a verb has already been a found. A command
cannot have two verbs. If no verb has already been found, this verb’s verb number and address
to a verb table that has the 4 byte token data are stored in words 0 and 1 of I'TBL. If a verb
has already be found, PARSER will see if it the word could also refer to a different valid part
of speech.

Preposition, Quantity, Adjective, and Noun Tokens

Any of the above tokens indicates a noun clause is starting. The number of noun clauses vari-
able is incremented. A separate routine (CLAUSE) will then find the end of the noun clause
and store the start and end addresses in ITBL. CLAUSE then returns the start address of any
remaining tokens PARSER should process. There are several exceptions where CLAUSE is not
execute:

1. If the matched adjective or noun is followed by OF, PARSER will ignore the adjective
and noun and use the token after OF for the start of the noun clause. This new token will be
matched on a subsequent loop.

2. If there are no more tokens or an end-of-command token is next after the matched preposition

23

7 PARSER: How Now Brown Cow

and less than 2 noun clauses have been found, the preposition address and value information
will be save into ITBL (Word 2 and 3).

3. If there are already 2 noun clauses, a "Too many noun clauses??" error is given. PARSER
will then return with FALSE.

6. Special Token
Any remaining special tokens that do not affect the syntax or objects requested will be ignored.
This includes tokens like IS, YES, A, or THE.

7. Improper/extra tokens - Syntax Error
All other situations are a syntax error. Therefore, PARSER will display a can’t-use-the-word
error and return FALSE. examples?

The first version of PARSER could understand multiple commands if they were separated by THEN
or “.”. Using AND or “” between verbs without objects like

JUMP AND LOOK
were not understood. However, commands with objects separated by AND or “,” like
OPEN MAILBOX AND GET LEAFLET

are accepted as CLAUSE would realize the AND separates two commands.

(Part 3) - Updates (Actors, Adverbs, and Numbers)

7.8 Update: Speaking to Actors with Quotes

The first modification to PARSER began with Zork 2 and relates to double quotes in commands.
A double quote is treated like an end-of-command token like THEN or period. It also toggles the
QUOTE-FLAG which is essentially a flag for finding an another double quote. The first double quote
seen sets that flag. A second will clear it.

In Zork 2, the use of a double quote comes into play in several special situations.When the player says
something out loud such as SAY “ABRACADABRA”, the game will typically ignore these commands
unless you are saying special words for a spell or a riddle. The game will then pull out the word after
the first double quote and use it to trigger other routines.

PARSER will also handle speaking to the other actors using quotes. Actors are characters in the
game that can be asked questions or perform actions. They are created using objects and have the
PERSONBIT set. Using interrupts, the game can have the actors move or perform other actions on
their own. To have an actor perform an action like:

TELL WIZARD "TURN OFF THE LAMP"

PARSER first divides up the command into two separate commands with the double quote as the
terminating token for both commands. So the previous command becomes:

TELL WIZARD” and
TURN OFF THE LAMP”’

To have actors perform actions, PERFORM (discussed later) will call the TELL/ASK routine first
which ensure the direct object is a person (PERSONBIT) and then set WINNER to the actor.
PARSER will then process the second command with the actor as the WINNER. The individual
action routines handle these special situation where actors perform the commands by checking the
value of WINNER. Later, PARSER will ensure that WINNER is set back to the player on its next
execution by detecting a clear QUOTE-FLAG and WINNER not set to the player.

24

7.9 Update: Titles and Adverbs (briefly)

Deadline expanded the methods for interacting with actors by allowing commands in these formats:

TELL/ASK actor TO command
Actor THEN command

PARSER would change the TO or THEN tokens to a double quote token which is then treated
as an end-of-command token just like it was back in Zork 2. The verb number in I'TBL would
automatically be set to the verb number for TELL if the second format is used. HGTG later added
a check to ensure the token after TO was a verb which indicated the start of another command.
The player in Deadline could also refer to actors with their name followed by a comma:

Actor, command

PARSER (through CLAUSE) considers as a end-of-command between two commands. The comma
is then changed to “then” and processed like in the other formats.

Deadline also allowed the PLAYER to ask the actors directly about an object or ask them to give
you an object using:

ASK actor ABOUT object
ASK actor FOR object

These are treated like any other command and depend on the object attributes.

Finally, Deadline also introduced a new routine which checks if the requested actor is in the current
location and if the subsequent command is appropriate (action is WHAT, FIND, TELL, or SHOW)
before allowing the commands to be processed. This check would be added to subsequent games.
PERFORM will call the TELL/ASK routine which ensure the direct object is a person (PERSON-
BIT) and then set WINNER to the actor. PARSER will then process the second command with the
actor as the WINNER.

7.9 Update: Titles and Adverbs (briefly)

The recognition of titles used to address actors like MRS. or MR. and automatically skip them
along with any following period was introduced with Deadline. The game also recognized 5 specific
adverbs (CAREFULLY, QUIETLY, SLOWLY, QUICKLY, and BRIEFLY) and saved the adverb’s
Vocabulary address in ADVERB. It would be used later by specific action routines such as WATCH,
GO, or READ. The adverbs were considered a special token and not a specific part of speech.
Bureaucracy is the only game with adverbs, but they are not needed to complete the game.

25

7 PARSER: How Now Brown Cow

7.10 Update: Numbers, a new object

Deadline introduce numbers and time to Infocom games. Since these values do not match with
any token, they are given a $0000 Vocabulary address. NUMBER? will then change the $0000 to
the vocabulary address for a “intnum” or “number” token. A special global variable contains the
numerical value. For time values, the time in minutes is saved:

1. Loop through all the characters of an unknown token

2. Tf the character is a digit, then take the current sum, multiply it by 10, and add this value of
this digit.

3. If a “” is found, then the previous digits are likely an hour value. Save this into a separate
TIM variable and reset the total sum. Continue looping through the remaining digits which
will be the minutes value.

4. Once all the digits are read (and there are no extra non-digit characters), then the sum (value
of the digits) is save into P-NUMBER and this unknown token is given the Vocabulary address
for “intnum”.

5. If the sum is greater than 10000, then the routine will return FALSE.

6. If the number was an time value, then the sum is actually the minutes value. The routine will
take the hour value and multiply it by 60 and then add the sum. If the hour value is greater
than 23, then the routine will return FALSE. There is no restriction on the size of the minutes
value though. This new sum (time in minutes) is also saved in P-NUMBER.

Numbers Time (hours:mins)
e Old Sum New Sum i — Old Sum New Sum
[4205 | [4 [11:a5] [0]+ O =
T T — T
| 4205 | | 2 [12:45| | 2 |+
P —
| 4205 | | @ | 11:45 | |
T — X0
| acos | | 8 |11:a5 | | a4 |+
P-NUMBER — P-NUMBER

| 11:45 | [0S +

Figure 4: Numbers, Time

Routines can then search for the “intnum” token and use the value in the corresponding global
variable. Because of this design, only one number or time value could be used in each command.
Games using time values can impose certain restrictions on the what hours are valid. For example,
Deadline considers any time between 1:00 and 7:59 to be PM. So 7:00 is converted to 19:00 (or
7pm) for the game. Hours from 0 to 23 are considered valid for all games. Most games will convert
the hour and minutes into all minutes. Only Sherlock checks the value of the minutes. So a time
value of 14:80 could be valid in most games that use time as they are converted to all minutes.
More number formats would be recognized in later games. They are listed below:

26

] Added Format \ Game Introduced \ Notes ‘

$xxx Cutthroats No cents portion is allowed. The value
is saved in a different global variable
than P-NUMBER. The “intnum” object
has it’s property 11 set to “amount of
money”.

XXX-YYYY Suspect The phone number is stored as two
separate numbers in separate global
variables

XXX, XXX LGOP Comma separated number is converted
to a single 4-6 digit number

xx(B-E) $xxx.yy #xxxx | Bureaucracy Number followed by letters B-E
indicates seat row and letter (4 times
row # + seat letter converted to 0-3
value) and money value (converted to
cents) are saved in their own special
global values. The object type returned
is “intnum” except for a money value
where “money” is used. If a # starts a
number, it is ignored.

HH:MM AM/PM Sherlock The hour is converted to the
corresponding 24 hour value. The
entire time is saved in the game’s
special time table format

8 PARSER: New Commands and Routines

8.1 Introduction

Ever since the first version of Zork 1, there has been an AGAIN command. However, it basically
used the previously saved PRSA, PRSO, and PRSI in a PERFORM call. The use of EZIP allowed
new routines to be created to handle the various new buffers and provide new commands. Starting
with AMFV, a new method to manage the input and token buffers allowed for a more sophisticated
AGAIN command. The game also introduced the OOPS command where unknown words in a
command could be corrected one by one. Beyond Zork added the UNDO command which allows
the user to “go back” one command.

Also two new buffers were created, AGAIN-LEXV and OOPS-INBUF, for three new routines. In
essence, they could be also considered previous LEXV and previous INBUF, respectively.

8.2 STUFF

Arguments: source buffer, destination buffer, length

Returns: TRUE

STUFF copies a set length of tokens from the source buffer to the destination buffer. If no length is
given, the maximum length (29 tokens) is used. First, the two bytes (maximum and actual number
of tokens) at the start of the token buffer are copied. Then all the token buffer data is copied up to
the amount requested. The routine always returns TRUE. Beyond Zork was able to replace this
routine with a new opcode (COPY _TABLE). Sherlock still used STUFF.

27

8 PARSER: New Commands and Routines

8.3 INBUF-STUFF

Arguments: source buffer, destination buffer

Returns: TRUE

INBUF-STUFF just copies the entire contents one character at at time of the source input buffer
to the destination input buffer. With XZIP, Beyond Zork and Sherlock used a new instruction
(COPY _TABLE) to handle this routines.

8.4 New AGAIN command

In Infocom games since AMFV, the AGAIN command is more formally processed and checked
specifically by PARSER. If it is given, several checks are done before the old command is copied back
and processed:

e Check that last command was not orphaned
e Check that last command was valid

e Check that the actor in last command is still present. This is to ensure that any non-player
actor is present if an actor direct command is used again.

e Check the subsequent token (if it exists) is not a end-of-command token (THEN, AND. period,
or comma). Then print the error message.

If all the above checks pass, PARSER copies the old input buffer from OOPS-INBUF into INBUF.
It does the same for the AGAIN-LEXV to LEXV.

If commands exist after an AGAIN command, the entire token and input buffers are temporarily saved
into reserve buffers, RESERVE-LEXV and RESERVE-INBUF, respectively, because they would’ve
been overwritten while performing the AGAIN command. The start of the next command is also
saved in RESERVE-PTR. The previous WINNER, P-MERGED flag, and DIR (just in case) are
restored from global variables. The previous token and input buffers, AGAIN-LEXV and OOPS-
INBUF, are again copied back into LEXV and INBUF, respectively. Finally, OTBL is copied back
into ITBL. PARSER then continues to process the newly restored command as normal. On the next
iteration of PARSER, it will detect that RESERVE-PTR is set and copy the remain command info
from RESERVE-LEXV and RESERVE-INBUF data back into LEXV and INBUF, respectively. The
next command starts in the restored data at the location indicated by RESERVE-PTR.

8.5 OOPS!

The OOPS command was an important innovation in the era before copy and paste were invented.
Previously any commands with errors would have to be completely re-typed with the correction.
This was especially painful for long or multiple commands. The user could correct any errors with

00PS <replacement token>

If an unknown token is found, various values are calculated and stored in OOPS-TABLE:

‘ Word 0 ‘ Word 1 ‘ Word 2 ‘ Word 3 ‘
Offset to unknown | Offset to start of Length of all token | Offset to byte after
token in command with data in command the end of
AGAIN-LEXV unknown token in with the unknown OOPS-INBUF

AGAIN-LEXV token

28

8.6 INBUF-ADD

PARSER will grab the Vocabulary address of the replacement token (after OOPS) and replace it
with the empty address in the unknown token’s entry in AGAIN-LEXV. Only the first token after
OOPS is checked. An error message is display if more tokens are given. INBUF-ADD is called to
appended the replacement token to the end of the OOPS-INBUF. That routine will also store the
replacement token’s length and updated pointer in OOPS-INBUF in the unknown token’s entry in
AGAIN-LEXYV. Finally the modified OOPS-INBUF and AGAIN-LEXV are copied back into the
INBUF and LEXYV, respectively. PARSER then resumes parsing the command as it normally does.
If there is another unknown word error in this just correct command, another OOPS can be used to
correct the next error. This can go on until all the errors are fixed.

This feature has been present in all version 3 games since Sorcerer-R18, and all version 4 and 5
games since its introduction.

8.6 INBUF-ADD

Arguments: length of replacement token, ptr of replacement token in INBUF, offset of unknown
token in OOPS-INBUF

Returns: TRUE

INBUF-ADD is slightly more sophisticated. The characters for the referred token in the first two
arguments in appended to the end of OOPS-INBUF. The pointer to the end of OOPS-INBUF is
retrieved from the OOPS-TABLE (or calculated using the data from the last token if it is not in the
OOPS-TABLE). The length of this replacement token and pointer to it in OOPS-INBUF are copied
back into the unknown token’s entry in AGAIN-LEXYV.

IMBUF-ADD | - H
\

INEUF 4

78 &F &F 70 T3 zu@n 62 62 &F 1_3_)1~—-
0001 | offset tostart of command in AGAIN-LEXY

DOPS-INBUF 0000 | length of token data in AGAIN.LEXY

78 6F 70 BH BE 20 74 6B 65 20 6D Bl 65 &C B2 TE

QOPS-TABLE

{new] COPS-INBUF | 'l' e

T8 EF T ES EE 20 74 &8 £5 20 &0 61 &% &C 62 TE €ﬁ-1 63 6C E2 &F T8 }
P5-
F i DOPS-TABLE
o smveEeas N o rrepm———m—
: 000 | langth of token data in AGAIN-LEXY
; 0007
L

Figure 5: INBUF-ADD and OOPS-TABLE

8.7 UNDO

Finally an UNDO command was introduced with Beyond Zork which would restore the game
state before the last command was executed. While this capability was available since version 1
of Z-machines, it was never implemented because of the need for more internal memory (a limited
quantity back then) or having to constantly save the data onto an external memory storage device,

29

9 CLAUSE: Find the Noun Clause Boundaries

likely a disk drive, which would slow the execution of the game down. But the requirements of
XZIP called for ZIP emulators with higher memory capacities, the necessary game state data could
be saved into a different part of the internal memory. Only Beyond Zork and Sherlock had this
function.

The saving of the current game state was done in the PARSER routine after the check for a GO
command. The save undo operation is used to copy the contents of dynamic memory (everything
before the Syntax data) which is essentially the header information, all OBJECT data, global vari-
ables, tables, and buffers. Also the call stack is saved. If the player uses the UNDO command, it
would call a separate routine that would attempt to restore the saved gate state data and continue
with the execution of the command after the save undo operation in PARSER. If an error occurs,
the appropriate error message is displayed.

8.8 Update: Other Minor Changes in PARSER

EZIP and XZIP games only added slight modifications to PARSER. Most of these revolved around
setting or clearing certain global variables such as XNAM. Others would search for unimportant
tokens such as “please” and skip over them.

8.9 Update: ReplaceToken routine

With the advent of the AGAIN command in AMFV and its use of the AGAIN-LEXYV buffer, the
replacing of tokens in PARSER and CLAUSE required changes in both those buffers. So a new routine
was created, ReplaceToken. But it also including a way to copy the length and pointer information
for the token before the replaced one into the location of the replaced one. The dictionary address
for the replaced token will then be modified as normal.

9 CLAUSE: Find the Noun Clause Boundaries

Arguments: Start address of clause, Preposition number of clause, Vocabulary address of current
token

Return: Address to start of clause, -1 if no tokens are left to process, or FALSE if error in clause
syntax

9.1 Introduction

CLAUSE will find the end address of a noun clause and saves the start and end addresses for this
clause along with the preposition information in ITBL. P-NCN (noun clause number) indicates if
the direct (1) or indirect (2) object clause is being processed. Specific locations in ITBL for the
extracted information to be stored are calculated depending on P-NCN.

Direct Object (Noun 1) | Indirect Object (Noun
Clause 2) Clause
Preposition Number Word 2 Word 4
Vocabulary Address of Preposition Word 3 Word 5
Address of First Token (Start) Word 6 Word 8
Address after Last Token (End) Word 7 Word 9

30

9.2 How it screens...

9.2 How it screens...
CLAUSE loops through tokens in LEXV as long as the given tokens are part of a valid syntax for a
noun clause. Briefly, the routine will

e Save any preposition information (number and address) if it exists into the proper locations in
ITBL.

— The preposition information is usually passed as an argument. CLAUSE will then find
the Vocabulary address of the preposition.

— If no preposition is given or exists, $00 is saved as the preposition number and address
e Save the start address of the noun clause into the proper location in ITBL.
e Attempt to get the next token to process as well.
e Loop through the tokens in LEXV as long as the given tokens are part of a valid syntax for a

noun clause (see rules below)

Once the routine stopped checking for tokens, it can return three possible results: FALSE if there
was a syntax error, -1 if no more tokens left to process, or offset to the last token in the newly found
clause. The address after the end of the newly found clause will be saved in the proper location in
ITBL for the end address of the clause.

‘ Type ‘ Example ‘ Action ‘
Unmatched Display error & return
Conjunction (“and” or “)”) Eat apple and orange Set ANDFLAG & continue
Quantity (“all” or “one”) Take all bananas Continue
Quantity (“all” or “one”) + Burn one of the letters Skip “of” token & continue
((Of”

End-of-command “then” or “.” | Throw hammer then go west | Save end address of current
noun clause and return

Preposition (not the first Put letter inside mailbox Save end address of current

token in the clause) noun clause and return

Noun (also an Adjective) + Drop gold coin Continue

Noun

Noun and ANDFLAG set Eat apple and orange and Clear ANDFLAG & continue

grape
Noun and ANDFLAG clear Eat apple and orange Continue
and next token is an Eat all fruit except banana

exception (“but” or
“exception”) or conjunction

token
Noun Turn statue Save end address of current
noun clause & return
‘ Adjective ‘ Read brown book ‘ Continue
Special (not Conjunction, Push the button Continue

Quantity, or
End-of-command)

All others (verbs or direction) | Ignite red match and go east | Change conjunction token to

and ANDFLAG set “then” and go back 2 tokens
to process again™

All others (verbs or direction) | Cut rope go north Display “Can’t Use” error &

and ANDFLAG clear return

31

9 CLAUSE: Find the Noun Clause Boundaries

*For example:

get candle and eat apple

is converted to:

get candle then eat apple

-~

with CLAUSE going back to the conjunction token to reprocess the clause. The routine will recognize
“then” as an end-of-command token, marking the end of a clause.

32

9.3 Update: New Matches...

9.3 Update: New Matches. ..

Later Infocom games added more acceptable token combination for clauses which caused CLAUSE to
also grow. Outside of specialized tokens used in specific games (such as spell names in Spellbreaker),
the new and improved CLAUSE mainly became more sophisticated on deciding what part of speech
a token was being based upon its context with other tokens. The major additional rules created by

Infocom are below:

‘ Type ‘ Example ‘ Action Game ‘
Articles Eat an apple Skip over token & Deadline
("the","a" "an") continue
Unmatched and Take 2 candles Unmatched token Deadline
NUMBER? is true changed to “intnum?”,

global var set to value,
& continue
“of” and verb = “accuse” | Accuse Bob of murder Change “of” to “with” & | Deadline
continue
“” and previous token is | Ask Mr. Smith about Continue Deadline,
a title (“mrs”,”"mr””ms”, | paper LGOP
“dr”, “st”)
Preposition (first token | Throw out ball Continue Zork 1-R88
checked)
Preposition (prep value Skip over token & LGOP
already given in continue
argument)
Preposition (can also be | Write on back side Assume preposition is an | Bureaucracy
an adjective) and a prep adjective and continue
has already been give
Noun (can also be Drop gold coin Assume noun is an HGTG,
adjective) and next Take copper hot rod adjective & Continue Moonmist
token is noun or adj or
direction
Adjective AND Green Continue Zork 1-R88
P-MERGED/ Get Green
P-OFLAG set or verb
given
Special (not A red Continue Zork 1-R88
Conjunction, Quantity, Get a red
or End-of-command)
AND P-MERGED/
P-OFLAG set or verb
given
All others (verb, Ignite red match and go | Change conjunction Seastalker
direction) and east token to “then” and go
ANDFLAG set and verb back 2 tokens &
given continue
Profanity, interrogatives | Eat banana who Display error message & | LGOP, Trinity
stop

33

10 ORPHAN-MERGE: Fix What Is Broken

10 ORPHAN-MERGE: Fix What Is Broken

Arguments: None

Return: TRUE if orphaned command is corrected, FALSE if unable to correct the orphaned com-
mand

10.1 Introduction

Now that the major parts of the command have been identified (if they exist) and stored in ITBL,
PARSER will first see if the given command corrects an orphaned command, a previous command
that had ambiguous or missing necessary information. Originally, only nouns could be ambiguous.
So the clarifying token had be an adjective. If an adjective could refer to more than one object in a
location, an error was given.
For example, the user enters:

IGNITE CANDLE

in an empty room. An orphaned command will be created as no indirect object is given (the candle
needs to be ignited with something). The game will respond that it does not know what the user
wants to ignite the touch with. This could be correct by then typing:

TORCH
or
WITH THE TORCH

A new command IGNITE CANDLE WITH TORCH would be created and replace the previous
command TORCH (or WITH THE TORCH) and then processed by PARSER.
In another example, a room contains a red card, red flower, and blue flower. If the command was

GET FLOWER

it would be considered ambiguous as it could be the red or blue flower. This could be corrected by
typing:

RED

which would then lead to a newly created command:

GET RED FLOWER

If the command was

GET BLUE

GET-OBJECT which matches the token with an object would be able to figure out you meant the
blue flower as there is only one object with the BLUE adjective. If the command was

GET RED

then GET-OBJECT would display a missing noun error as the game will not create an orphaned
command from an ambiguous adjective.

Starting with HGT G, ambiguous adjectives could be used to create an orphaned command be later
clarified with a noun. So the previous example would prompt the game to ask you for clarification
on which RED object. These examples could be corrected by typing just CARD or FLOWER. So a
clarifying noun could also refer to more than one object in the same room which would then trigger
another orphan command. The game would then use the new information to match a single specific
object and process the newly completed command.

34

10.2 Fixing Orphans with ORPHAN-MERGE

10.2 Fixing Orphans with ORPHAN-MERGE
ORPHAN-MERGE is called by PARSER if the P-OFLAG has been set in 2 possible situations:

e SYNTAX-CHECK is in unable to match even one syntax entries for the given verb because of
a missing object clause

e GET-OBJECT is matches more than one object for the given noun, adjective, or GWIM bit

Regardless of the outcome of the routine call, P-OFLAG will be cleared. So the user only has one
chance to supply missing or clarifying tokens to an orphaned command. The orphaned command
data is stored in OTBL (a mirror of ITBL) and OCLAUSE (a mirror of LEXV).
ORPHAN-MERGE first validates the given input through various checks. Only the missing or
clarifying token is required. If any extra information is given (like prepositions or verbs) are given,
then they must match the ones in the orphaned command to be accepted. ORPHAN-MERGE checks
two aspects of the given input:

e Verb - To be a valid response to an orphan command, the new input must have the same verb

as the orphaned command or must have no verb. If the verb is different, the new input is likely
a new command, and ORPHAN-MERGE will return with FALSE.

e Number of noun clause - Only one noun clause is allowed to clarify an ambiguous or supply a
missing noun clause. If two are given in the new input, then ORPHAN-MERGE will return
with FALSE.

ORPHAN-MERGE then checks if the orphaned command has a missing clause by looking for $01
in the starting address of the noun clauses in OTBL. If both object clauses have starting addresses
equal to $01, then only the direct object clause is processed. PARSER will then attempt to process
this partially completed command and again discover this partially incomplete command can satisfy
a syntax entry. If this new command is again unable to be matched with a syntax, it will be orphaned
with the indirect object clause missing, The user can then input another clarifying command for the
indirect object clause.

Once a missing object clause is found, ORPHAN-MERGE will see ensure that the preposition in
the given input (if entered) matches the one in the orphaned command (stored in OTBL). Finally,
the routine will copy the start and end addresses of the clarifying noun clause (the single adjective)
from LEXYV into the appropriate start and end address in OTBL. If the missing object clause is the
indirect one, the number of noun clauses will also be set to 2. ORPHAN-MERGE will then skip
checking if the given input clarifies an ambiguous noun.

10.3 Clearing up Ambiguity

If no missing noun clause found in OTBL (start address with $01), the given input could clarify an
ambiguous noun. ORPHAN-MERGE checks if P~ACLAUSE was set (by GET-OBJECTS) to the
element of the clause’s start address in OTBL with the ambiguous noun ($06 for direct object and
$08 for indirect object clause). ORPHAN-MERGE will then proceed:

e Check that there is only one noun clause in the given input. If there are more, than clear
P-ACLAUSE and return with a FALSE.

e Loop through the tokens in the noun clause indicated by P-ACLAUSE and check their word
types.

e If the token’s word type is an adjective, then temporarily save the vocabulary address of that
token. If an adjective has already been found, the new one will override the old one. So only
the last given adjective is used for clarification.

35

10 ORPHAN-MERGE: Fix What Is Broken

e If the token’s word type is a noun, then ORPHAN-MERGE ensures that the token is the same
as the ambiguous noun (P-NAM) or is “ONE”. In the above example, “BLUE ONE” or “RED
FLOWER” are both valid for the ambiguous FLOWER. It will then stop checking tokens and
call ACLAUSE-WIN (to create a new noun clause)

e All other word types or mismatched nouns will cause ORPHAN-MERGE to stop checking
tokens and return FALSE.

e If no nouns are given after checking all the tokens in the given noun clause, ORPHAN-MERGE
will also call ACLAUSE-WIN using the last found adjective in the given noun clause.

e If no adjective is given after checking all those tokens, ORPHAN-MERGE will return false.

Once any missing noun clause is replaced or an ambiguous word is clarified, ORPHAN-MERGE
will copy the data from OTBL into I'TBL for PARSER to continue to processing as if the complete
command had just been entered. So an clarified orphaned command will use tokens located in LEXV
and OCLAUSE.

10.4 ACLAUSE-WIN

Arguments: Vocabulary address for Adjective

Return: TRUE

ACLAUSE-WIN setups up parameters for CLAUSE-COPY using ACLAUSE (element number of a
clause’s start address such as $06), ACLAUSE + 1 (element number of clause’s end address such
as $07), and the clarifying adjective. By setting the parse table that CLAUSE-COPY should use
(CC-TBL) to OTBL, CLAUSE-COPY will copy the tokens from OCLAUSE back to OCLAUSE and
insert a clarifying adjective before the ambiguous noun (P-NAM). The routine will also ensure the
P-NCN is set to the correct number of noun clauses. ACLAUSE is cleared to indicate the ambiguous
noun was clarified.

10.5 Using CLAUSE-COPY

Arguments: Element number of start address of clause in ITBL, Element number of end address of
clause in ITBL, INSERT adjective (optional)

Return: TRUE

CLAUSE-COPY copies tokens from LEXV to the end of OCLAUSE using the addresses in one of the
parse table (ITBL or OTBL) referred by a global variable (official name is not known). CLAUSE-
COPY is called with two arguments, the element numbers that identify the start and end addresses
for the noun clause to copy. These element values are $06 and $07 for the direct object clause or

$08 and $09 for the indirect object clause. It will then append the requested tokens to the end of
OCLAUSE.

e Find the offset to the end of OCLAUSE using the value in element 0.

e Calculate the new start address of the orphaned noun clause by finding the end address of
OCLAUSE as it is the start address for the newly appended tokens.

e Store this new start address in the appropriate element (start address for DO or 10 clause) in
OTBL (306 or $08).

36

10.6 CLAUSE-ADD

e CLAUSE-COPY will repeatedly call CLAUSE-ADD to copy the tokens located in the requested
noun clause to the end of OCLAUSE. These new tokens have their byte pointer to the input
buffer and length set to zero.

e If a clarifying token (usually an adjective) is given while copying these tokens, CLAUSE-COPY
will check if the copied token matches the current ambiguous token, P-ANAM (a vocabulary
address for the ambiguous noun). If a match is found, CLAUSE-ADD is called with the
vocabulary address of ths clarifying token and a new token with the clarifying token is added
to OCLAUSE. Then the P-ANAM is also added to OCLAUSE with CLAUSE-ADD.

e Once all the remaining tokens in the requested noun clause are appended to OCLAUSE,
CLAUSE-COPY will calculate the new end address of OCLAUSE and save it into the proper
element (end address of noun clause) in OTBL.

Starting with Zork 1, there was a bug with this setup. Each time an orphaned noun clause was
created, it was appended to OCLAUSE. Since the end of OCLAUSE was never reset back to $00, it
was possible OCLAUSE would grow outside of its 100 byte size limit and spill over into the memory
locations of other variables. This was correct with Zork 3 by setting the size of OCLAUSE to zero
in the OPRHAN routine.

10.6 CLAUSE-ADD

Arguments: Vocabulary address to token

Return: True

CLAUSE-ADD takes the given Vocabulary address and creates a new token add the end of OCLAUSE.
Originally, the destination token buffer defaulted to OCLAUSE. In Moonmist, the P-CCTBL was
used to stored the address of the destination token buffer in element 2. More information about P-
CCTBL in Section 10.10. In Bureaucracy (and later Beyond Zork), the address of the destination
token buffer was passed as the 2nd argument instead of using P-CCTBL.

10.7 Update: New changes of ORPHAN-MERGE

First changes to ORPHAN-MERGE were with Zork 1-R88. It mainly corrected the bug when a
first token in a claifying response which can be a verb and an adjective is matched as a verb first.
This is especially an issue when only the first 6 characters are used. For example, the command:

BOARD BOAT

in a location with a row boat and inflatable boat in created an orphaned command because BOAT
is ambiguous. If the user then enters:

INFLAT

the original ORPHAN-MERGE processes INFLAT as “inflate”, the verb, and asks what object to
inflate. However, then this new version will understand that the user meant an “inflatable” BOAT
and treat INFLAT as an adjective to clarify the ambiguous BOAT. Also, ORPHAN-MERGE will
understand that the input:

INFLAT BOAT

means INFLAT is the adjective “inflatable” because the next token, BOAT, is a noun. INFLAT
will then clarify the ambiguous noun. Obviously, any token that can be a verb and adjective will
be treated as a verb by PARSER if there no orphan command to clarify. “ALL” and “ONE” are

37

10 ORPHAN-MERGE: Fix What Is Broken

also considered valid adjectives for the purpose of clarification. Finally, a new global variable, P-
MERGED, is set if an orphaned command is clarified and is used mainly when printing object names
in PRSO/PRSI-PRINT to ensure the whole correct object name is printed and not the clarifying
token.

Planetfall-R37 introduced a similar dual word type option for tokens which can be verbs and nouns.
Early in the routine, the given verb was checked for this dual word type. If it could be a noun, then
ORPHAN-MERGE assumed it should be treated as a noun. The start address of the subsequent
noun clause was adjusted to include the previously thought verb. For example:

IGNITE TORCH
which will result in a missing noun error (need an indirect object). If the user then types:
FIRE

this token can be a verb or noun. but will be treated as a noun as there is an orphaned command.
HGTG introduced the ability to clarify an ambiguous adjective. In those situations, a clarifying
noun is given. Previously, any noun given in the clarifying clause is ignored (if it is the same one in
the orphaned command) or causes an error if its different. Now, ORPHAN-MERGE will also look
for a clarifying noun if the ambiguous word is an adjective. NCLAUSE-WIN is called to complete
the clarification. ONE and ALL are valid adjectives or nouns and can clarify either ambiguous nouns
or adjectives. If either of these tokens follows another adjective, then they should be considered a
noun and call ACLAUSE-WIN immediately with the given adjective as the clarifying token. Finally,
there is a new data structure, OVTBL, which holds the VTBL from original command that was
orphaned. Essentially, ORPHAN-MERGE copies back the information from OVTBL into VTBL
but sets OTBL’s VIBL addr to VI'BL and not OVTBL. But the OTBL information will be copied
back to ITBL.

Suspect reconfirmed the number of noun clauses in the fixed orphan command by seeing if the
OTBL”s 10’s start address is set. If also skipped out of ORPHAN-MERGE if it was called while
there are still unprocessed commands are given where the next verb is “tell”.

AMPFYV changed the checking of a given verb. If it is the same as the orphaned command, then skip
over checking it as a possible an adj. If the given verb does not match, then ORPHAN-MERGE will
check to see if that token can also be an adj.

Bureaucracy did not include the NCLAUSE-WIN option but did allow for the entire noun clause
to be used to clarify the ambiguous noun. This is done by setting the ADJ to $01 which will cause
CLAUSE-COPY to insert the entire noun clause instead of just the adjective. It also blocks certain
adjectives for clarifications.

The Lurking Horror introduced the assumption that if a verb is given without a noun clause,
then the verb could be the clarifying token. The start of the noun clause would then be adjusted to
include the verb token. Copying of OVTBL and OTBL is gone???

Sherlock did also check to see if a solo verb can be a noun. If so, then the verb table is cleared
and the start and end addresses of the DO are set to include the verb token. Sherlock will adjusted
the end address of the DO clause to include the entire IO clause for certain situations (<name> -+
TOMB or BOX + <adj/noun>).

AMFYV changed the way that the clarifying input is used with orphaned commands. The main new
feature is clarifying an ambiguous noun as well. ORPHAN-MERGE still begins with

e Check if the new input’s verb (if given) matches the one in the orphaned command or the given
verb also can be an adjective. If so, set the ADJ to $01 for now.

e Otherwise check if the given verb can also be a noun. If so and no other nouns were given then
set the start and end addresses of the direct object clause to be those around the first token

(address of the first token and address of the second token). The verb # and addr to VTBI
will be cleared.

38

10.7 Update: New changes of ORPHAN-MERGE

After those possible scenarios are checked, the routine does the similar checking as the first gen
ORPHAN-MERGE. Tt first checks the scenarios where a verb is given which could have different
meanings.

e If the new verb is different than the old verb from OTBL, then return false. The new input is
probably a new command.

e If the new verb can also be an adjective, then save it in ADJ just in case.

e If the new verb can also be a noun and no noun clauses are given, then set the start and end
addresses of the direct object clause to point to the verb.

The routine then does a few more checks:

e Rechecks the verb in the new input (if it exists). If this new verb is not the same as the one in
the OTBL and it cannot also be an adjective, then RFALSE (an error).

e If there two noun clauses are given, then it is an error (can’t offer two answers to correct an
orphaned command).

The first type of orphan correction is replacing a missing noun clause. This is marked by $01 as the
start address of a noun clause. The routine will check the direct object clause first and then the
indirect object clause if the direct object is not missing any information. The routine cannot correct
both clauses with a single command.

e Check that the preposition in the new input (if given) is the same as the one in the orphaned
noun clause. If it is not the same, then return false.

e If ADJ is set (which means the verb is can also be a clarifying adjective), then set the start and
end addresses of the missing noun clause in OTBL to address of the first token in the token
buffer. If the ADJ is not set, then set the start and end addresses of the missing noun clause in
OTBL to the ones from the direct object clause in I'TBL. For a missing indirect object clause,
the routine copies the start and end addresses from the direct object clause in ITBL to the
indirect object clause in OTBL and sets the # of noun clauses to 2.

If neither noun clause is missing, the routine will look for a clause with an ambiguous token. In
that situation, ACLAUSE has the field # for the clause with the ambiguous token whose vocabulary
address is in P-ANAM. The routine will make sure there is only 1 noun clause to clarify the ambiguous
token. If is no noun clauses given and any verb in the new input cannot be an adjective as well,
then it will error. The routine will then walk through the tokens in the direct object clause of the

new input to find the appropriate clarifying tokens for the orphaned command. Each token will be
checked:

e A quantity token (ALL, EVERYT, ONE) - set current token as ADJ
e An adjective type - set cur token as ADJ
e ONE (after other tokens) - call ACLAUSE-WIN with ADJ and stop looping

e A noun type - If it is the same as the ambiguous token, then call ACLAUSE-WIN with ADJ.
Otherwise, call NCLAUSE-WIN as the noun is a clarifying token.

If END is blank (for some reason), then set # of noun clause to 1, set END to original BEG, and
set BEG to 1 token block before END. Once all the checking has been done, ORPHAN-MERGE will
copy the info from OVTBL back to VTBL and copy the OTBL info back to ITBL. P-MERGED is
then set to indicate the orphan command is probably fixed.

39

10 ORPHAN-MERGE: Fix What Is Broken

10.8 Update: New ACLAUSE-WIN expands its options

Zork 1-R88 also began to use the OVTBL to hold the corresponding verb info for the ambiguous
noun. This would be used to later repopulate VI'BL and create a valid command with the clarified
token and ambiguous noun.

HGTG began to use the CC-TBL to hold parameters needed for ACLAUSE-WIN. Theses were
mainly the source and destination buffer. This allowed other buffers besides OCLAUSE to be used.
The dictionary address of the clarifying adjective in INSRT was still the only passed argument.
AMFV abandoned using CC-TBL because all of the needed values could be passed as routine
arguments.

Bureaucracy added an interesting twist if ACLAUSE-WIN was called with a blank INSRT. In that
situation, it is set to $01 which then causes CLAUSE-COPY to insert the entire direct object clause
of the recently entered clarifying command instead of a single token. Lurking Horror got rid of this
function.

10.9 Update: NCLAUSE-WIN
Arguments: Nothing

Results: True

NCLAUSE-WIN is a new routine first used in HGTG that is used when players were able to clarify
an ambiguous adjective. It was not always allowed after its introduction in HGTG. It always uses
the direct object clause from ITBL as the source (obviously as the clarifying noun is the first any
only object given in an input) and P-ACLAUSE as the destination clause in OTBL. It also adjusts
the number of noun clauses if necessary. Since Trinity, newer version 4 games and all version 5 games
that did allow for ambiguous nouns used a version that did not rely on CC-TBL to pass arguments
to CLAUSE-COPY. This could be done with the routine call arguments now.

This new version adds several more checks:

if there are no noun clauses and the given verb can be an noun, then assume the verb is a noun
actually and create a noun clause around it. Also adjust the NCN to 1. It can then continue
processing it.

It also looks for “one” when checking for nouns. Typically, “one” is usually an adjective. But if
it follows after another adjective, then it should be considered a noun and call ACLAUSE-WIN
immediately.

10.10 Update: New version of CLAUSE-COPY

With HGTG, the destination addresses were added to P-CCTBL in those situations where CLAUSE-
COPY was need to copy tokens to something other than OCLAUSE.

| Word 0 | Word 1 | Word 2 | Word 3 |
Element # for start | Element # for end | Element # for start | Element # for end
address for source address in source address in address in

token buffer

token buffer

destination token
buffer

destination token
buffer

Also the tables with source and destination addresses were passed to CLAUSE-COPY along with
the clarifying adjective to insert.

LGOP checked to see if the first token to add to the OCLAUSE is the same as the clarifying
token. If so, then don’t check to see if current token to copy is the ambiguous one. Just copy it
to OCLAUSE. LGOP also fixed the resetting of OCLAUSE ptrs by moving all the recently added
tokens to OCLAUSE to the front of OCLAUSE.

40

Moonmist added more changes. First, it changed the parameters in CCTBL to the address of the
destination token buffer (such as OCLAUSE) in word 2. No word 3 value is needed. Second, it also
checked the first token in the destination token buffer was the same as the clarifying token when the
ambiguous token is found while copying tokens. If so, it would skip over adding this clarifying token
but would add the ambiguous token to the destination token. Finally, if the INSRT=801, it would
copy the entire direct object clause in the clarifying command before the ambiguous token. This
allows a phrase to be copied instead of a signal token.

Bureaucracy did not have rely on CC-TBL for arguments as it was written in ZIP 4 which allowed
up to 7 arguments to be passed to routines. CLAUSE-COPY past the address to the source and
destination input tables, elements for the start and end addresses for the tokens to copy, source of
the tokens, and the INSRT clarifying token if necessary as arguments. It has a more sophisticated
memory management system though. If the end of the new clarified clause token buffer (OCLAUSE
for direct object and IClause for indirect object) is close to the start of the clause that is going to be
copied, the routine will not the clarified clause token buffer but modify the source clause by shifting
over tokens to create space for the clarifying tokens to be inserted. This is to prevent an overrun of
the clause token buffer into other buffers. Otherwise, it functioned very similar to the Moonmist.
It did skip over moving the recently added tokens in the destination token buffer to the front of it
if the source token buffer is the same as the destination token buffer. This is because they will be
automatically inserted to the front of the destination token buffer.

The Lurking Horror allowed for a noun clause to be the clarifying information, not just a token
as in previous versions of CLAUSE-COPY. Another argument, along with the original INSRT, to
represent the start and end addresses of the tokens to insert when the ambiguous token is found.
Beyond Zork used the more simple version in Mloonmist but did not need CC-TBL like Bureau-
cracy.

11 SYNTAX-CHECK: Find Correct Syntax Entry

Arguments: None

Return: TRUE if syntax matched, Syntax number if matched using GWIM, or FALSE for all errors
or orphaned commands

11.1 Introduction

Given the verb, any prepositions, and any direct and indirect clauses, the game will need to see
which valid syntax structure for the given verb best matches. Different usages of the same verb
can require different prepositions and noun clauses (for example: TAKE LETTER, TAKE LETTER
FROM MAILBOX, TAKE LETTER TO BOB). These combinations are stored as syntax entries.
SYNTAX-CHECK will attempt to find the best match. If no perfect match can be found, GWIM is
called to try to replace any needed missing objects. If that also fails to completely match a syntax
entry, an orphan command will be created with ORPHAN.

11.2 Hierarchy of Matching

SYNTAX-CHECK will try to match the command’s combination of verb, prepositions, and object
clauses with one of the verb’s syntax entries. If it cannot find a perfect match because of missing
information, it will return the best fitting entry based upon a specific hierarchy.

First, SYNTAX-CHECK will check if a verb is given. If not, then show an missing verb error and
return FALSE. Up to 2 noun clauses are allowed in a syntax entry. If SYNTAX-CHECK finds a

41

11 SYNTAX-CHECK: Find Correct Syntax Entry

complete match as it loops through all the verb’s syntax entries, it will return that syntax entry’s
action number.

11.3 GWIM (Get What | Mean)
Arguments: GWIMBIT number, LOC byte

Return: Object number if only 1 match, False if no or more than 1 object matched

If there is no complete match, SYNTAX-CHECK will call GWIM to try to match any missing object
clauses with a local object to create a complete match, favoring a missing direct object clause over
indirect object. For example, the command IGNITE PAPER would typically cause an error as the
game does not know what object to use to ignite the paper (the indirect object clause is missing).
GWIM uses GET-OBJECT to search for a local object that has a specific attribute flag (GWIMBIT)
set and returns that object. In that example, the GWIMBIT would be the attribute to indicate an
object is a source of fire. If a local object was a TORCH and it was on fire, then GWIM would
display the clarification and return TORCH:

IGNITE PAPER
[with the torch]

GWIM first checks if the passed GWIMBIT is the RMUNGBIT (AKA KLUDGEBIT). If so, the
ROOMS object is returned. After setting the global SLOCBITS and GWIMBIT variables and
resetting the number of objects in the MERGE table, GET-OBJECT will try to match any object
in the current location with a GWIMBIT set. If none or more than 1 object is found, then return
false. If only 1 object is matched, then return that object. Also, GWIM will display a small amount
of text in parentheses or brackets to describe which object was matched. It may also have additional
text to clarify the matched objects (for example, if it is in your hand).

42

11.4 ORPHAN: Creating an Orphaned Command

11.4 ORPHAN: Creating an Orphaned Command

Arguments: Address of syntax entry with missing direct object, Address of syntax entry with missing
indirect object

Return: True

If a the command given or completed by using GWIM does not completely match any valid syntax
entries, SYNTAX-CHECK will call ORPHAN to setup an orphaned command. It is also called by
GET-OBJECT (described later) if too many objects match the given adjective and noun in a clause.
ORPHAN will first copy the data from ITBL to OTBL. If an indirect object clause is given (possibly
has ambiguous words), the indirect object tokens from LEXV are appended into OCLAUSE. Then,
if a direct object clause is given (possibly has ambiguous words), the direct object tokens from
LEXV are appended into OCLAUSE. So the indirect object tokens are placed before the direct
object tokens in OCLAUSE. When called by SYNTAX-CHECK, it also copies the corresponding
preposition number (if any) for the missing noun clauses into the OTBL. ORPHAN then stores $01
as the start address of the missing or ambiguous noun clauses in the OTBL to indicate that clause
has a missing or ambiguous word. Finally, SYNTAX-CHECK will then set the O-FLAG and offer
clarifying information for the player to help supply the missing information.

- [omommem] o]

[Move to ned syntax entry

DRIVET and DRIVEZ hold the address of the synian eniry wilh She missing dimcl or indime ! object clause, mspeciiely,

Figure 6: Syntax Check

43

11 SYNTAX-CHECK:

Possible Outcomes:

Find Correct Syntax Entry

Syntax Entry
Command

0 object clauses

1 object clause

2 object clauses

0 object clauses

All prepositions

should be all blank.

Return Action
number

If DO preposition
matches or
command
preposition is
missing, then DO Is
missing. Save
syntax entry
address in DO

missing var.

If DO preposition
matches or
command
preposition is
missing, then DO is
missing. Save
syntax entry
address in DO

missing var.

1 object clause

All prepositions

should be all blank.

Return Action
number

If DO preposition
matches and
indirect object
preposition is
blank, then get
Action number

If DO preposition
matches, then 10 is
missing. Save
syntax entry
address in 10

missing var.

2 object clauses

All prepositions

should be all blank.

Return Action
number

If DO preposition
matches and
indirect object
preposition is
blank, then get
Action number

If direct and
indirect object
prepositions match,
then get Action
number

11.5 Update: SYNTAX-CHECK

No major changes were made in SYNTAX-CHECK except for a check on the number of noun clauses
in the input. If it was greater than the number in the syntax entry, then it would bypass checking
for orphaned clauses as it isn’t possible. Also, the error messaging was more specific depending on
what piece of information was missing such as using “WHO” or “WHERE” when appropriate and if
the WINNER Is the PLAYER or a different actor. Some games check for specific verbs that will not
generate an orphaned command.

Mini-Zork did use a new compact format for the syntax entries that was also used in Sherlock. No
other released Infocom game used it. The size of the entry depended on the number of objects in the
entry. The number of objects is stored in the highest 2 bits of byte 1. The preposition number for
the direct object is reduced by $C0 and stored in the lower 6 bits of byte 1. The preposition number
for the indirect object is also reduced by $C0 and stored in the lower 6 bits of byte 5. However, the
top 2 bits are not used in byte 5. The syntax token byte is composed to flags that refer to the LOC
tokens referred earlier.

The structure of the syntax entries for no objects is:

‘ Byte 1 ‘ Byte 2 ‘

2 high bits = Action
number of object number
clauses

6 low bits =
Preposition number
for direct object

44

11.6 Update: New versions of GWIM

The structure of the syntax entries with only direct objects is:

| Byte 1 | Byte2 [Byte3 [Byted |
2 high bits = Action GWIMBIT| LOC byte
number of object number number for direct
clauses for direct | object
6 low bits = object
Preposition number
for direct object

The structure of the syntax entries with direct and indirect objects is:

| Byte 1 | Byte2 [Byte3 [Byte4 |[Byte5 [Byte6 |[Byte7 |
2 high bits = Action GWIMBIT| LOC byte | Prep GWIMBIT| LOC byte
number of object number number for direct | number number for
clauses for direct | object for for indirect
6 low bits = object indirect indirect object
Preposition number object object
for direct object

These variable sized entries help eliminate any wasted space in the syntax entry blocks. SYNTAX-
CHECK and SYNTAX-FOUND were adjusted to use this different format.

11.6 Update: New versions of GWIM

Many games used modified GWIM routines that would add extra clarifying text such as “of”, “at” or
“in” when commenting to the user about an object matched because of a command with a specific
preposition. The Witness would use a special string to refer to an object matched by GWIM
instead of the standard object name. For example, GWIM will use “Asian man” preceded by “the”
instead of the object’s name, “Mr. Phong”. Trinity introduced an initial check of the GWIMBIT in
the IT-OBJECT if it is set to an object. The routine will return what the object that is referenced
by IT-OBJECT.

11.7 Update: New versions of ORPHAN

HGTG introduce a new method for handling orphaned commands with the introduction of the
game’s new CLAUSE-COPY (see above). For its ORPHAN routine, it made sure OCLAUSE was
cleared if P-MERGED is also clear and also copied over VIBL to OVTBL.

Mini-Zork has a modified ORPHAN because it uses a modified syntax entry format. Instead of
manually getting the preposition number from the syntax entry, Mini-Zork calls a separate routine
that extracts is from the modified syntax entry format. Version 4 and 5 games could call CLAUSE-
COPY with more arguments and needed fewer global variables. So CC-TBL was not needed anymore.
Version 5 games used the same routine as the Version 4 games but using the COPY-TABLE command
that replaced the manual copying loop in ORPHAN.

Bureaucracy uses the same routine as AMFYV except it copies the object clauses into separate
token buffers, OCLAUSE for the direct object tokens and IClause for the indirect object tokens.

12 Getting Objects with SNARF-OBJECTS

Arguments: None
Return: TRUE if objects found, FALSE if no objects found

45

12 Getting Objects with SNARF-OBJECTS

12.1 Introduction

After finding the best syntax entry and any local objects to represent missing objects in the given
command, SNARF-OBJECTS looks for the objects mentioned in the direct and indirect object
clauses by calling two other routines on each clause:

SNARFEM to find all the objects mentioned in the noun clause
BUT-MERGE to remove all the exception objects not wanted by the user
The matched objects have their numbers stored into the appropriate tables, P-PRSO and P-PRSI.

12.2 Setting up Routines

SNARF-OBJECT simply sets up the variables needed by SNARFEM: start and end addresses of di-
rect object clause and address of table to store extracted objects, P-PRSO. After calling SNARFEM,
BUT-MERGE is called to remove any exception objects from BUTTABLE if any exists. This is re-
peated using the indirect object clause and P-PRSI. If there is only one object in P-PRSI and there
are exception objects, SNARF-OBJECT assumes the exception objects will apply to the P-PRSO
and call BUT-MERGE again on P-PRSO. For example, the command:

CUT ALL EXCEPT NEWSPAPER

is interpreted as multiple CUT commands on all the local objects except the newspaper. Similarly,
the command:

ATTACK ALL PIRATES WITH ALL GUNS EXCEPT RIFLE

has the RIFLE object removed from the indirect objects referenced by ALL GUNS. However, the
following command:

EAT ALL FRUITS WITH FORK EXCEPT APPLE

has the EXCEPT object applied to the direct objects this time as trying to apply it to the indirect
objects could actually eliminate the only object in the indirect clause and generate an error.

12.3 SNARFEM: Looking for Groups of Objects

Arguments: Start address to noun clause, End address to noun clause, Address to object table

Return: True if objects extracted, False if no objects extracted

SNARFEM searches the noun clause for adjectives, nouns, and quantity (like ALL or ONE) tokens
that describe one object or a single group of objects. Any found adjectives or nouns will have
their values saved in the global variables P-ADJ and P-NAM respectively. If multiple adjectives or
nouns are given, then only the most recent ones are saved in those variables. Any other tokens like
conjunctions, exceptions (like BUT), or different quantity tokens indicate no more tokens to describe
an object and triggers GET-OBJECT to be called which matches a local object with the given
adjective and noun. Quantity tokens change how many objects are matched by GET-OBJECT by
changing GETFLAGS. Exception tokens change where GET-OBJECT saves those matched objects.
Details are below:

46

12.4 BUT-MERGE

] Token \ Action
ALL Set P-GETFLAGS to $01 (ALL mode)
ALL + OF Set P-GETFLAGS to $01 (ALL mode) and skip over

OF token

BUT or EXCEPT

If BUT table not being used, then call GET-OBJECT
with TBL and switch to BUT table for subsequent
storage. Otherwise, call GET-OBJECT with BUT.

A or ONE (no adjective set)

Set P-GETFLAGS to $02 (ONE mode)

A + OF or ONE + OF (no
adjective set)

Set P-GETFLAGS to $02 (ONE mode) and skip over
OF token

A or ONE (adjective already set)

Copy ONEOBJ into NAM. Call GET-OBJECT with
the currently used table (TBL or BUT).

AND or <7

Call GET-OBJECT with the currently used table
(TBL or BUT)

AND or 7 + AND or ",

Ignore first conjunction token and continue processing

Buzzwords

Skip over this token

OF (ALL, A, or ONE not given)

Set P-GETFLAGS to $04 (INHIBIT mode). Ignore
this object as it is an error in syntax. Of note,
PARSER already ignores any adjective or noun with
“OF” at the start of a clause.

Adjective Set ADJ to adjective value and Dictionary address of
adjective into ADJN
Noun Set Dictionary address of noun into NAM and

ONEOBJ (just in case)

All other tokens

Skip over this token

No more tokens

Call GET-OBJECT with the currently used table
(TBL or BUT)

For example, ALL OF THE CANDLES is the treated the same as ALL CANDLES. Also, A BLUE
CARD AND A RED ONE is interpreted as A BLUE CARD AND A RED CARD with ONE referring
to the just given noun CARD. ONE OF THE FLOWERS is seen as ONE FLOWERS.

If BUT or EXCEPT have not been given, any numbers for found objects will be saved in table found
in the third argument. Once BUT or EXCEPT have been given, all found objects will be saved in
BUT table.

12.4 BUT-MERGE

Arguments: Address to object table

Return: P-MERGE (address to merged object table)

This routine copies the objects in the given table into the MERGE table but skips over any objects
in an exception (BUTS) table. It uses ZMEMQ to see if the given object is in BUTS. While the
routine returns to address to the MERGE table. It will also put the address of the given object table
into MERGE.

12.5 Getting Object Numbers for each Object with GET-OBJECT
Arguments: Address to Object table, Verbose flag

Return: TRUE if successful in getting appropriate number of object, FALSE for any error

47

12 Getting Objects with SNARF-OBJECTS

GET-OBJECT tries to find a local object that matches the given identifiers (adjective, noun, and
GWIMBIT) and stores that object number in the given object table. It will limit the matched objects
depending on what GETFLAGS mode (default, ALL, ONE, or INHIBIT) is set by SNARFEM.
SLOCBITS is first set to #FFFF (all flags set) to ensure the greatest chance of matching an object
to the identifiers. If a clause’s SLOCBITS is set to a non-zero value from the matching syntax and
the match mode is ALL, then that clause’s SLOCBITS is used.

GET-OBJECT requires that a noun is at least given in the command. If there is no noun, then the
adjective will be used as a noun if possible. For example, “gold” can be an adjective or a noun like
in “piece of gold”. If the adjective cannot be a noun, the routine will display a missing noun error
and quit. Now, GET-OBJECT will look for objects in the WINNER and current location (if lit)
using DO-SL. Any found objects are saved into the given object table. The processing of the objects
depends on the mode:

e ALL: Search using DO-SL and return true
e INHIBIT: Return true

e ONE: Search using DO-SL or GLOBAL-CHECK found:
— 0 objects (using DO-SL): Search again using GLOBAL-CHECK
— 0 objects (using GLOBAL-CHECK): Give a CAN’T SEE error and return false.
— 1 object: Return true.
— >1 objects: Randomly pick one object and move it to the top of the table. Set the number
of objects to 1. Return true.
e Default: Search using DO-SL or GLOBAL-CHECK found:
— 0 objects (using DO-SL): Search again using GLOBAL-CHECK
— 0 objects (using GLOBAL-CHECK): Give a CAN’T SEE error and return false.
— 1 object: Return true.

— >1 objects: Restore SLOCBITS from matched syntax entry. Search again with same
method:

x 0 or >1 objects: Create an orphaned command by setting the ambiguous variables
(AADJ, ANAM, and OFLAG) and call OPRHAN (Initial search had >1 but second
search had 0 or >1 objects matched which is an ambiguous situation.) Return false.

x 1 object: Return true.

The identifiers, ADJ and NAM, are always cleared after GET-OBJECT is called except if in INHIBIT
mode. If a correct number of objects is found, then the routine also restores the SLOCBITS to what
is listed in the matching syntax.

12.6 Bug: Randomly Picking Objects

When only one object is requested like in:
GET ONE CARD

in a room with multiple cards (blue card, red card, etc), GET-OBJECT will randomly choosing one
object. However, the routine places this chose object in the first position of the object table. If there
is an object already in the first position, it will be overwritten. For example:

GET FLASHLIGHT AND ONE CARD

48

12.7 Update: New versions of SNARF-OBJECTS

SNARFEM will call GET-OBJECT on FLASHLIGHT and put that object number in the first
position of the object table. SNARFEM will then call GET-OBJECT on ONE CARD. Since there
are multiple cards in that room, GET-OBJECT will randomly pick one and store it in place of
FLASHLIGHT.

Another bug is that the randomly picked item could also picked outside of the group of matching
objects. For example:

GET FLASHLIGHT AND LETTER AND ONE CARD

in a room with three cards, GET-OBJECT will try to randomly pick one of the three cards. If the
random number is 1, GET-OBJECT will pick the object in the first position which is FLASHLIGHT.

12.7 Update: New versions of SNARF-OBJECTS

Zork 1-R88 added an P-AND flag to help with displaying lists of objects properly and to have a
hierarchy of adjectives when referring to objects. Only the first adjective is used. All subsequent
adjectives are ignored before calling GET-OBJECT.

Sorcerer-R18 processed the indirect clause first and then the direct object clause. However pro-
cessing the exception objects is saved until the end with it trying to apply it to the direct object
clause first. If nothing happens then it will try to apply the exception objects to the indirect objects.
If there are no direct objects then any exception clause will be applied to the indirect object. Most
of the games since the Sorcerer-R18 had SNARFEM check if P-GETFLAGS was in ALL mode
before starting. If so, it would set GETFLAGS back to ALL mode after completing its SNARFEM.
LGOP set a global variable, CurrentNounClause, which is used by SNARFEM and SaveNAMAJj,
when objects cannot be found. This allows ambiguous nouns or adjectives for the direct and indirect
clauses to be stored separately. The game also added several more checks in the routine. If an ALL,
BOTH, or EVERYTHING token is found, the routine will call MANY-CHECK to see if the syntax
allows for multiple objects to be processed. It also checks if the token is profane and provides an
error message. Finally, there is a check for certain adjectives.

Bureaucracy added a check on the number of indirect objects if an exception was to be applied.
If there is only 1 indirect object, it would assume the exception objects would refer to the direct
objects. Trying to apply the exception objects on a single indirect object could remove it.
Sherlock call SNARFEM and EXCEPTION on different clauses depending on how many object
clauses are in the syntax entry which needs to be specially extracted with the compact format.???

12.8 Update: New versions of SNARFEM

Sorcerer-R6 allowed special spell related word when referring to objects. Seastalker similarly
allowed numbers and also had SNARFEM ignore any additional adjectives given when referring to
an object. Only the first adjective is used.

HGTG checks if the GETFLAGS was in ALL mode. If so, the GETFLAGS is cleared (changed to
default mode) and will restore the GETFLAGS back to the ALL mode once SNARFEM is complete.
LGOP will check if a syntax entry will allow multiple objects if “all” or “both” is given with an
object. Tt will be rechecked again toward the end of the PARSER routine.

Hollywood Hijinx does allow for two adjectives to be given for some objects and has a separate
routine to check for valid combinations when a second adjective is found.

Other games will have checks for profanity which is not allowed when referring to objects.

12.9 Update: New BUT-MERGE

The only major change was with AMFV and other version 4 and 5 games was the use of SCAN TABLE
operator instead of the ZMEMQ routine. Though various parameters had to be calculated, the new

49

12 Getting Objects with SNARF-OBJECTS

operator could quickly look for a found objects in the exception table.

12.10 Update: New ways to GET-OBJECT

Every game seems to have used their own special version of GET-OBJECT. Those modifications
included special checks for certain actions or with certain objects and displaying special errors for
certain situations. However, improvements were made over successive games.

Zork 1-R88 added a check if the WINNER is also the PLAYER if there is an orphaned command.
If so, then error that it can’t be orphaned.

Zork 2-R23 added a new WHICH-PRINT routine which also lists the possible objects for the user
to choose from when the noun is ambiguous. It also ensured that the PLAYER can also be checked
for objects if the WINNER needing objects is not the PLAYER.

Zork 3 added an early check if the adjective could also be a direction. If so, then it is saved in the
DIR variable and ensures the “direction” object is the only entry in the object table. More detailed
error messages were added for various situations.

Suspended had a unique GET-OBJECT as the player did not interact directly with the environment.
So the GET-OBJECT was more liberal when searching for objects. It would ensure the SLOCBIT
was #FFFF for all “get” commands.

The Witness introduced the GENERIC property which contains a routine address used to clarify a
requested object. If multiple objects match a given NAM instead of just one, the routine address in
the GENERIC property will be called. This routine will then try to determine which specific object
was requested based upon various variable values and return that object number. There is no check
to see if the GENERIC property is set. If it is blank, it will just return FALSE. GET-OBJECT will
then default to providing an error message and display the possible objects to choose from. Also, the
NOT-HERE-OBJECT was introduced. For any unmatching identifiers, the NOT-HERE-OBJECT
would be returned for counting purposes. The unmatched NAM and ADJ are then saved into XNAM
and XADJ.

Planetfall did all for searching the WINNER if in ALL mode only if the WINNER was not the
player.

Sorcerer-R15 did limit the created of NOT-HERE-OBJECT and XNAM/XADJ only if the room
was lit or for specific actions.

AMPFYV introduced having a separate NAM and ADJ for direct and indirect object clauses. They
are stored in separate two word tables with the first element in each is for the direct clause. It was
used by certain actions to check the current noun or adjective in use. It use was later expanded in
LGOP.

LGOP did save the identifiers for the direct and indirect objects in different locations when an object
is matched. It also fixed the situation where the requested object is a vehicle that the WINNER is
inside of.

Spellbreaker also including the searching a vehicle for the requested object if its open. In the few
situations, that multiple objects are matched, a separate routine is called to see if all the objects
have the same GENERIC routine. If so, the GENERIC routine will be called to clarify which object
was requested.

Some games will have extra checks for non-matched objects to see if they are part of a special case.
This is primarily for spell names.

Bureaucracy does add a creative error message if OCLAUSE or IClause has more than 10 tokens
in it.

The Lurking Horror saves the first 4 adjective identifiers and their corresponding tokens for any
object. If multiple adjectives are given, it will see if the last one can also be a noun. If that is the
case, it will assign that token to NAM and decrease the number of adjectives.

50

13 Search for Objects using SEARCH-LIST

13.1 Introduction

Another one of the interesting aspects of Infocom games is how it searches and matches objects to
those requested by the player. It will use various methods to find these objects and collect them into
a table.

13.2 SEARCH-LIST: Finding Objects in Room and on Winner
Arguments: Number to Object to search inside, Address to object table, Search level (0-2)

Return: Number of objects found

When the user refers to objects in a command, PARSER needs to see which objects are referred and
accessible. The given noun, adjective, and/or GWIMBIT will be used as identifiers for a particular
object. SEARCH-LIST will check the objects in a given location (a room or person) and see if it
matches these identifiers. There are 3 levels of search which affects which objects are checked:
e Search-TOP/Type 0: ON-GROUND or HELD (reachable objects)
— Look at objects that are on “top” of all objects

— Match against all non-container objects and objects on surfaces in the location. Any
containers (if they are open or transparent) and surfaces on the surface are checked com-
pletely.

e Search-ALL/Type 1 (all objects)

— Match against all objects in the location. Only containers that are open or transparent
will be searched.

e Search-BOT/Type 2: IN-ROOM or CARRIED (contained objects)
— Look inside any containers (look at second-level or any non-top level)

— Match against all objects on any surface and inside any open or transparent container.

The matched objects are saved in the table addressed passed to SEARCH-LIST.

ol

13 Search for Objects using SEARCH-LIST

Room/Person 1

Cont1,2,2 Cont 1,3
| Surface 1,2
Cont 1,4
Cont 1,4.3

Obj

Figure 7: Search Object

For example, SEARCH-LIST is examining Room/Person 1. For each search mode, the listed objects
will be checked:

TOP: Obj 1,1, Surface 1,2 (Obj 1,2,1, Cont 1,2,2 (Obj 1,2,2,1))

BOT: Surface 1,2, Cont 1,4 (Obj 1,4,1, Surface 1,4,2 (Obj 1,4,2,1), Cont 1,4,3 (Obj 1,4,3,1))

ALL: Obj 1,1, Surface 1,2 (Obj 1,2,1, Cont 1,2,2 (Obj 1,2,2,1)), Surface 1,2, Cont 1,4 (Obj 1,4,1,
Surface 1,4,2 (Obj 1,4,2,1), Cont 1,4,3 (Obj 1,4,3,1))

Object Cont 1,3 is invisible.

All Infocom games appeared to be using the same SEARCH-LIST routine.

13.3 DO-SL: Find Objects Based Upon Search Level
Arguments: Number of object to search, LOC value to SRC-TOP, LOC value to SRC-BOT

Return: Number of objects found

DO-SL calls SEARCH-LIST with the appropriate search type depending on the LOC flags given
in the arguments and the LOC flags in the matched syntax entry. If 1 is used for both DO-SL
arguments then, SEARCH-LIST will perform a SRC-ALL match. All matched objects will be saved
in P-TABLE.

GET-OBJECT calls DO-SL with the ON-GROUND and IN-ROOM flags to look for any objects in
the given location for use with the current syntax entry. Similarly, GET-OBJECT also calls it with
the HELD and CARRIED flags to look for objects on the PLAYER. All other calls to DO-SL seem
to mainly use the double 1 parameter which will match anything.

All Infocom games appeared to be using the same DO-SL routine.

13.4 GLOBAL-CHECK: Look for Objects Everywhere

Arguments: Address to object table

Return: True if GLOBALs checked, False if object matched from local-globals or PSEUDO objects

Some objects in a game may be accessible from more than one locations and valid objects to be
used with certain actions. GLOBAL-CHECK is the routine that tries to find these potentially valid

52

13.5 THIS-IT?

objects. Infocom had three different types of these special objects: GLOBALS, LOCAL-GLOBALS,
and PSEUDO objects.

GLOBALS can be accessed from any location in the game. If a game had an AIR object, that
would likely be accessible from any location. Remember, these are not necessarily rooms. LOCAL-
GLOBALS are accessible from multiple locations but not all. The best example is a door which would
be accessible from the two rooms that are separated by it. PSEUDO (or virtual) objects are the
most confusing of the three objects as they are not actual objects. They only have the SYNONYMS
(nouns) and ACTION properties. A given location can have PSEUDO objects that are matched if
certain nouns are used in that location. The routine then jumps to a different routine for each noun
that will figure out what is the object the user was referencing. So a bed object in two different
rooms could be handled with a routine instead of creating multiple objects.

GLOBAL-CHECK will first try to match any identifiers (noun/NAM, adj/ADJ, or GWIMBIT)
to any object in the GLOBAL property (AKA LOCAL-GLOBALS) of the current location. The
number to any matched objects will be added to P-TABLE. The routine does not search inside
the local-global objects. Next, the PSEUDO property is checked which contains a list of 2 word
pairs. The first word is the Vocabulary address to the noun that references the pseudo object
while the second word is an ACTION routine address. If the object matches, the Z-string of the
matching noun and ACTION addresses are saved into a pseudo object’s description and ROUTINE
properties, respectively, which is then saved to P-TABLE. GLOBAL-CHECK will continue to check
the remaining objects in PSEUDO and save any matches. If no objects have matched by this
point, the GLOBAL-OBJECTS are searched using DO-SL on GLOBAL-OBJECTS. SLOC-BITS is
temporarily set to $SFFFF which makes any match valid and restored afterwards.

13.5 THIS-IT?

Arguments: Object number

Return: True if object matches

Infocom games can use three different identifiers to see if an object matches the one requested in a
command: noun (P-NAM), adjective(P-ADJ), and GWIMBIT. THIS-IT? will see if the given object
matches any of these identifiers. First, the routine will see if the object is visible. So invisible (or
hidden) objects cannot be matched. THIS-IT? will then see if the given noun (if it exists) matches
any of the Vocabulary addresses in the SYNONYMS property of the object. It will do a similar check
with the given adjective (if it exists) with the addresses in the ADJECTIVE property. Finally, it
will see if the GWIMBIT (if given) is set on the object. If the given information matches, THIS-IT?
returns true.

13.6 Update: New version of SEARCH-LIST

Only a few major changes were added to SEARCH-LIST. Zork 2 had the addition of the SEARCH-
BIT attribute for objects which made it easy to restrict what objects could be searched inside of.
Deadline checked the SYNONYM property for an object. If that property was not set, the object
was not searched as it is not likely a “real” object. Some games would use the SEE-INSIDE? predicate
(instead of hard coded) to determine which objects could be searched inside.

13.7 Update: New version of GLOBAL-CHECK

The first addition was the checking if the request was made for certain actions in Deadline. If
so, an additional search using DO-SL with any flags on all ROOMs in the game was done. Other
games like Wishbringer and Bureaucracy had would also search the objects contained inside

93

13 Search for Objects using SEARCH-LIST

LOCAL-GLOBALS. Sherlock also included this but limited it to objects that were actually rooms.
Sorcerer introduced setting the location of the PSEUDO object to the current location in case a
routine needed to know that. Wishbringer also expanded the search of LOCAL-GLOBALS by
having GLOBAL-CHECK also search inside those objects if possible.

LGOP introduced a new property, THINGS, which replaced PSEUDO that added adjectives for
THIS-IT? to match. THINGS would contain entries with a single adjective (if necessary) and a noun
with an associated ROUTINE address. If any given noun or adjective does not match the values
in an entry in THINGS, GLOBAL-CHECK will proceed to the next entry. If there is a match, the
PSEUDO objects values are set as previously described.

Several games did you a more abbreviated form of GLOBAL-CHECK. This was first done with
AMFV. After searching through the current locations local-globals, DO-SL with SRCALL was
called on all the game’s room objects which essentially searched all visible objects in the game.
Bureaucracy did not use a typical THINGS or PSEUDO property. It used a new property which
had a routine address and 1 word argument. This routine would then be called with the noun,
adjective, and stored argument. An object number could then be returned and later saved in TBL.

13.8 Update: New version of THIS-IT?

Some of the games added checks to quit this routine sooner. such as a blank SYNONYM or AD-
JECTIVE property. AMFYV removed the INVISIBLE flag check. Bureaucracy added a special
check if the given object is “intnum”. The P-NUMBER value will then be compared to prop 20 in 2
specific objects (flight number or leaflet). Also added various situations where the object given will
not be matched with the identifiers. The Lurking Horror would check all the NAMs in the G99
table against all the synonyms in an object. Sherlock also checks any token associated with the
given object by “of” like in “glass of milk”. It will also check the associated token to see if it matches
any adjectives and /or synonyms for the object.

13.9 Update: NOT-HERE-OBJECT

Introduced in The Witness, a new object, NOT-HERE-OBJECT, stood in for any requested objects
in a command that was not found. For example, if the user requested:

TAKE CANDLE, TORCH, and MATCH

but the torch was not present, the PRSOTBL would list 3 object numbers: one candle, one NOT-
HERE-OBJECT, and one match. When generating the table of object numbers corresponding to the
objects requested in a noun clause, any recognized object that was not present in the current location
had the NOT-HERE-OBJECT number used in its place. This occurs in the GET-OBJECT routine.
So the total number of returned objects is the same as requested. The NOT-HERE-OBJECT will
also call the GENERIC routine of an object to try to clarify which object the player was referencing.
The use of a NOT-HERE-OBJECT allowed the game to process the remaining commands and also
provide a more specific error message about the missing objects.

13.10 Update: MOBY-FIND
Arguments: Address to object table

Return: Number of objects found

I don’t know what MOBY! means, but MOBY-FIND was first used in to search for a match between
all visible objects (including inside open or transparent objects) in Suspended using P-NAM, P-
ADJ, or GWIMBIT. This first version was used when asking about objects to the Advisory Panel.

LJEssE MGGREW: I believe MOBY was slang meaning something like "big" (from Moby Dick, the giant whale).

54

It called SEARCH-LIST with SRCALL on all the rooms. If no object was matched, MOBY-FIND
would call DO-SL to search all of the LOCAL-GLOBAL objects with the results saved in P-TABLE.
The Witness had a more formal version of MOBY-FIND by using the noun and/or object to
search from XNAM and XADJ (replace the values in NAM and ADJ). It would sequentially go
through every room and find a matching object to XNAM and/or XADJ using SEARCH-LIST.
If no matching objects are found, then MOBY-FIND will use search all LOCAL-GLOBALS with
DO-SL with SRCALL level matching. If no match is found again, then MOBY-FIND will search all
the rooms again using DO-SL with SRCALL level matching. The returns of DO-SL are saved into
P-TABLE. The returned value is the number of objects found at either step. If only one object is
matched, its number will be saved into P-MOBY-FOUND for easy recall.

Sorcerer changed the final check on the ROOMS object back to SEARCH-LIST. AMFYV used a
more brute force approach but checking each object in the game sequentially. If the object is a room,
it is skipped. Any matched objects are saved in a table with the number of object found returned.
Spellbreaker will use a separate routine available on some objects to see if the object should be
matched during a MOBY-FIND. If multiple objects match for the given identifiers in

The Lurking Horror will check the GENERIC property of all the matched objects. If the routine
address is the same in all the object’s GENERIC property, MOBY-FIND will call that routine to
decide which object to return as the match.

Sherlock has special objects that can be searched at times (Holmes) and some that are always
available (like local-global objects).

14 Can Many Objects be TAKENn Before Using with
TAKE-CHECK and MANY-CHECK

14.1 Introduction

There are now two final checks on the verb by PARSER. The first is to see if the given verb can
automatically take objects and act upon them. The second is to see if the given verb can accept
multiple objects. Both sets of checks are done on direct (and indirect if present) object clauses.

e ITAKE-CHECK (through TAKE-CHECK)

e MANY-CHECK

14.2 ITAKE-CHECK (through TAKE-CHECK): Checking TAKE and
HAVE bits

Arguments: Address to object table, LOC byte

Returns: TRUE if objects do not need to be taken or were taken if necessary, FALSE if errors

TAKE-CHECK calls ITAKE-CHECK on each set of objects (direct objects from P-PRSO and in-
direct objects from P-PRSI) with the matching syntax’s LOC byte to verify if objects must be in
the possession of the WINNER to be used as some verbs require this. So an object in the room
but not on the WINNER is not valid. However, any verb syntax entry with a TAKE bit set in the
LOC byte is allowed to automatically put any matching object in the room into the WINNER’s
inventory and then act upon it. PARSER will see if any objects in an object clause that are not
in the Winner’s inventory can be automatically taken. If the object’s TRYTAKEBIT is set, this
would prevent PARSER from automatically taking it. For all objects without the TRYTAKEBIT
set, PARSER will call the CARRY object routine to move the object into the Winner’s routine.

99

14 Can Many Objects be TAKEn Before Using with TAKE-CHECK and MANY-CHECK

For any objects that can’t be automatically taken, it is possible the verb can still use it. However,
PARSER first checks if a HAVE flag is set in the verb syntax entry. This would require the object
be in the inventory to use it in the action. If so, then the object cannot be used and an error is
displayed. Any error will stop the checking of any remaining objects in the object clause.

14.3 Update: New ITAKE-CHECK

Starcross introduced a new I[TAKE-CHECK which tried to catch situations where objects could
not be taken. These included:

e Both TAKE and HAVE bits cleared (objects do not need to be held and can’t be taken) on
syntax

— if HAVE set, then check objects
— if HAVE not set and TAKE not set then RTRUE
— if HAVE not set and TAKE set then check objects (SEe if can be taken)

e The WINNER is not the PLAYER
e The object is held by the WINNER (using HELD?)
e The object is something that can’t be taken like “pair of hands”

The new routine would also not display error messages in certain situations such as an ACTOR
would try to take an object before using it. It also needed to check if the syntax had LOC TAKE
set before calling ITAKE to get the object. (at least try)

Sorcerer checked if the IT-OBJECT was accessible before using it. It also checked to see if the
object is held, it would then skip the rest of the routine. For any NOT-HERE-OBJECTs, it would
display a specific error message. If an object exists but can’t be used, then it would also updated
the IT-OBJECT value.

Seastalker also allowed “him” and “her” pronouns to be “taken” and used. But no checks on their
visibility was done until Wishbringer which also added the “them” pronoun. Later games like Hol-
lywood Hijinx would have specific checks for objects if they inside other objects (such as water
inside a bucket).

More specific error and confirmation messages were created. For example, these would use the
appropriate articles depending on the object and quantifiers depending on the number of objects.
They would also indicate if an ACTOR did not have an object.

14.4 MANY-CHECK

Arguments: None

Returns: TRUE if syntax entry accepts multiple objects, FALSE if not

Some verb syntax entries allow for multiple direct or indirect objects in their usage, such as GET or
IGNITE. PARSER will first check how many objects are in the direct and indirect object clauses. If
there is only 1, then this check is not needed. If there is more than 1 object and the MANY token
is not set for that direct object clause in the syntax entry, then an error message is displayed about
the verb not being able to use multiple objects. This same check is then done on the indirect objects
if necessary.

Only a few changes were made with this routine. Starting with Zork 1-R75, PARSER would run
MANY-CHECK first before TAKE-CHECK which correct a bug were PARSER would attempt to
take multiple requested objects first but then error out on the verb if it could not process multiple

56

objects. By flipping the order, PARSER can quickly see if multiple objects can be used on an verb
before trying to take then using TAKE-CHECK. This is mentioned in the Infocom Cabinet notes.
Deadline would assume the verb was “tell” if it was not given (occurs when the player is telling
an actor to do something). Sorcerer ensured that the complete verb was displayed if the current
command is the result of a merge. Finally, LGOP added a new parameter to indicate which noun
clause to check. This would eliminate the need to check if a particular clause in the matched syntax
can accept multiple objects.

15 It's Time to Perform with PERFORM

15.1 Introduction

At this point, all necessary information should be checked and processed. All the direct and indirect
objects and the action number to use those objects have been found. Many combinations of objects
and actions can be handled by the specific action routine. The designer of Infocom games understood
that many actions on objects could be handled with a generic verb action routine. Any special
circumstances usually depend on the objects used. Therefore, these circumstances could be checked
when accessing those objects and not clutter up a generic verb action routine.

15.2 Checks and Order

Since action routines can call PERFORM separately from PARSER to perform functions that mimic
a command, PERFORM does not use the global PRSA, PRSO, and PRSI but will be passed a
separate action, direct object, and indirect object arguments. It then temporarily saves the current
PRSA, PRSO, and PRSI.

1. PERFORM will check for the IT object in the direct or indirect object. If so, it will be replaced
with the previously referenced object for IT.

2. Tt will copy all the given arguments (action, direct object, and indirect object values) into the
appropriate global variables (PRSA, PRSO, PRSI).

3. If the given action is not GO, PERFORM will then update the IT object to the just given
direct object argument and update the location of the winner to the current location.

4. If the given action is not AGAIN, PERFORM will update the global variables for the last
action number, direct object, and indirect object. These are used by the AGAIN command.

After updating the necessary variables, PERFORM will call various routines to handle the action
on the objects. A non-handled action (by returning M-NOT-HANDLE) will be passed to the next
possible routine to handle it. The order of handler preference is below:

1. WINNER’s action routine

2. WINNER’s location’s action routine with M-BEG argument

3. Verb (PRSA) pre-action routine

4. Indirect object (PRSI) action routine

5. Direct object (PRSO) action routine (skipping if the action is GO)

6. Verb (PRSA) action routine

57

15 It’s Time to Perform with PERFORM

ACTION routines for objects and rooms can be passed standard RARG values for a specific type of
function to perform. Any needed objects can be found in PRSO and PRSI. The routine will then
return an action return value. If the routine can successfully complete a function, then M-HANDLED
is return. PERFORM will skip over all other subsequent handlers. If the routine cannot handle a
function, M-NOT-HANDLED is returned. PERFORM will then try other handlers to handle the
function. The verb action routine is considered the default handle routine and can always handle an
action. It usually displays a generic message. Once a function has been handled, the current room’s
ACTION routine is sent M-END to handle any remaining functions before the turn is completed.
If M-FATAL is ever returned by an action, then PERFORM will exit immediately and return M-
FATAL. Also, the current room’s ACTION routine is not called with M-END. Before PERFORM
returns, the previous values of PRSA, PRSO, and PRSI are restored.

| Room Arguments (RARG)

Action Return Values ‘

M-END, 0 M-NOT-HANDLED, 0
M-BEG, 1 M-HANDLED, 1
M-LOOK, 3 M-FATAL, 2
M-FLASH, 4

M-OBJDESC, 5

Objects trying to handle actions may need to double check which object is the direct and indirect
object. In an example from Infocom:

TAKE SWORD FROM THE STONE

would have the STONE object process the TAKE action first. In that case, the STONE could
interpret the user trying to take the STONE. To prevent this, STONE object could see if it is the
PRSI before handling the action.

Later ZIP 3 games also included checking an object’s CONTFCN (container function) before having
the direct object try to handle the action. This was only called in those rare situations (such as in
Starcross) where the direct object’s container would try to handle an action.

15.3 THIS-IS-IT

Starting with Sorcerer, PERFORM calls THIS-IS-IT after acting upon the PRSO and PRSI to
update the IT-OBJECT. The PRSO value is stored as the IT-OBJECT value. Planetfall would
introduce saving the location of the IT-OBJECT as well in a separate global variable. Wishbringer
added other pronouns objects (HIM-OBJECT, HER-OBJECT, and THEM-OBJECT) along with
their associated global variables which would be updated if needed based upon the attributes of the
PRSO (such as gender or being plural). The routine is also called from other parts of the game like
ITAKE-CHECK and specific action routines. It was only used in LGOP, Moonmist, Hollywood
Hijinx, Stationfall, and Plundered Hearts.

58

16 Pardon the Interruptions

16.1 Introduction

An interrupt is a special routine that is called after a certain number of turns has lapsed. They
can be used to monitor objects and variables in the background. Interrupts will then change other
variables and objects or call other routines and actions. Naming of these interrupt routines is done by
adding a “I-” prefix to the routine name. The array to hold interrupt entries is a 180 byte (90 word)
table where each entry had 3 words: enable flag, number of turns (TICKS), and routine address.
This meant the table could only hold 30 entries. Only 3 routines are used to manage this ingenious
system: INT to create or retrieve interrupt entries, QUEUE to set the number of turns before the
interrupt is called, and CLOCKER which checks all the interrupts and finds those that need to be
executed.

One thing to note is that there is no way to delete or replace an interrupt entry. It can be disabled by
clearing the enable flag though. So there is a limited number of total interrupts that can be created.

16.2 Creating and Storing interrupts with INT

Arguments: Routine address

Returns: Address to interrupt entry

INT typically uses the 180 byte interrupt table to manage up to 30 interrupt entries. Some games
like Deadline and The Witness use 300 bytes while Cutthroats’s table was 246 bytes in size.
The table is filled like a stack, from the highest address to the lowest. So the oldest routines are
located in the higher address, or the bottom of the table. The pointer to the newest interrupt entry
(C-INTS) then moves toward the front of the buffer. After a routine address is passed to INT,

e The routine address in each entry in the interrupt table is checked (starting with the newest
entry) with the requested one until there is a match or no more entries exist (when the pointer
to the current entry reaches the end of the table).

e If there is a match, then the address to this interrupt entry is returned.

e If there is no match, then pointer to the newest entry is moved up (decrease by 6 bytes) and
now points to a new blank entry. The requested routine address is stored in the appropriate
location in the new entry. The address to this new entry is returned.

99

16 Pardon the Interruptions

Beginning of —

Interrupt Buffer 2aro
“—C-INTS
Interrupt #20: .
Enable| # of | Routine
Flag | Ticks | Address
L
-
L
-
L
-
C-DEMON —= ° —C-INTS
Interrupt #2:
Y Enable| # of | Routine 1
C-DEMON — Flag | Ticks | Address «—C-INTS
Interrupt #1:
[Enable| #of | Routine 1
Previous Demon 244 | Flag | Ticks | Address Previous Interrupt

Ptr (C-DEMON) End of Interrupt Buffer " Ptr (C-INTS)

Figure 8: Interrupts

16.3 QUEUE - Setting Up the Interrupts

Arguments: Routine address, Number of turns

Returns: Address of interrupt entry

With the first generation interrupt routines, QUEUE was a separate routine to set the number of
turns, or TICKS. It would call INT to get the address to the interrupt entry for the request routine
address (creating the entry if necessary). Then. it would store the number of ticks for that interrupt
in the 2nd word value of that entry and return the address to this interrupt entry. The setting of
the enable flag was not done and have to be done using a separate STORE command. The last few
ZIP 3 games (Stationfall and The Lurking Horror) and most EZIP games (all except AMFV)
and all XZIP games did not use QUEUE. INT would automatically queue those entries or the games
would do it without a separate routine.

16.4 CLOCKER - Running Interrupts

Arguments: None

Returns: TRUE if an interrupt was executed, FALSE if no interrupt was executed

60

16.5 What about DEMONs?

CLOCKER is the main routine that checks each interrupt entry and decreases the number of turns
for any enabled entry. Tt will call the routine at the address stored in any interrupt entry with only
1 TICK left or -1 TICKS which indicates the entry will always be executed. CLOCKER is always
called at the end of the MAIN-LOOP.

e [f the given command was valid, CLOCKER will search through the interrupt table for entries
with their enable flag set and extract the number of turns left.

— The search begins with the newest interrupt entry and proceeds to the oldest entry.
o [f the TICKS is zero, CLOCKER goes to the next entry.

e If the TICKS is not zero (a negative, 1, or greater than 1) then it will be decreased by 1 and
saved back into the entry.

e If the TICKS is still greater than 1, then CLOCKER will then go to the next entry.

e At this point, CLOCKER will call the routine at the addr stored in the interrupt entry. TICKS
will be 1 or a negative number at this point.

If no routine is called, CLOCKER will return FALSE. Otherwise, it will return TRUE no matter
how many routines are called. The actual return value of the routine is not returned.

16.5 What about DEMONSs?

INT allowed an initially set of interrupts to be added to the interrupt table that are always checked
regardless of the PARSER outcome. This is marked by by the C-DEMONS pointer which moves
from the end of the interrupt table when new entries are created with the DEMON flag set. C-INTS
also moves when an entry is added when the DEMON flag is set. In game design, these important
interrupts are added first and end up at the bottom of the interrupt table. All other interrupts but
be added above these entries. If PARSER fails on a given command, CLOCKER will this and start
checking the interrupts starting with C-DEMON and not C-INT.

Zork 1’s first use of these special, all-run, interrupts were used for the demons and monsters in the
game. This term is very similar to “daemons” in operating systems where background processes can
run on their own. However, Infocom’s use of the word “demon” came after “daemon” was already
used by other programmers. It is probably just a happy coincidence.

16.6 Update: New INT and Interrupt Entry

All of the ZIP 1 and 2 games and most of the ZIP 3 games use the same INT routine as seen in Zork 1.
Cutthroats, HGTG, and Suspect used a slightly modified INT where DEMON pointer is omitted.
The first major change was with AMFYV where the size of the interrupt entry shrank to 2 words
by removing the ENABLE flag. Now, each entry with non-zero TICKS is considered enabled. Most
of the ZIP 3 games since LGOP also used this more compact interrupt entry structure. AMFV’s
version also kept track of the most recent blank entry which would be used when storing a new entry
instead of creating a new one. If new entry needs to be created beyond the limits of the table, an
error message is displayed but the entry is still created.

LGOP also introduced a smarter IN'T routine that build off the one from AMFV. It would “remove”
any entries at the top of the table with no more TICKS left by moving C-INT and skipping over these
completed entries. Any entries with no more TICKS surrounded by entries that were still enable
were not removed. This smarter INT also modified how interrupts during the game initialization are
stored. It would convert their TICK numbers (by increasing it by 3 and making it negative) to label
these interrupts so they would not be called until CLOCKER had already been executed. So, the

61

16 Pardon the Interruptions

first call of CLOCKER would convert these entries back to normal entries (converting the TICKS
back to positive values and subtracting 3) and then be checked on the next call to CLOCKER. So,
these initial interrupts would be bypassed at the start.

Only a few subsequent Infocom games modified their INT routines beyond what was mentioned. A
few added special flag checks that would quit out of INT. Borderzone and Sherlock both used
time more than ticks and had modified INT routines to reflect that.

16.7 Update: New CLOCKER

CLOCKER also went through multiple modifications over successive games. The ZIP 2 version added
the CLOCK-WAIT flag which skips checking any interrupts (including DEMON ones) when set and
is cleared. This feature is only important for the WAIT command which already calls CLOCKER
3 times by default. Without this flag, the MAIN-LOOP will also call CLOCKER after WAIT is
completed. So there would be 4 calls to CLOCKER, for a WAIT command which is seen in ZIP 1.
So the flag helps clear up that confusion.

Some CLOCKER routines (like in Deadline, Trinity, Bureaucracy, Borderzone, and Sherlock)
would also increment separate time variables (seconds, minutes, hours, and possibly days) that
the game would use for various situations. These routines (like in Deadline and Moonmist)
check the number of turns or the elapsed time to see if the game should end prematurely or reset
specific counters. Others like Wishbringer would check specific flags that would cause CLOCKER
to execute routines of specific entries if their TICK values were below a certain threshold. Later
versions (Suspended, Infidel, Enchanter, Zork 1, Zork 2, Sorcerer, Moonmist, Ballyhoo,
Mini-Zork) increase the number of turns in CLOCKER instead of MAIN-LOOP. The Witness,
Seastalker, and Cutthroats return the first non-zero interrupt routine result. However, if one of
the routine returns M-FATAL, then that will always be returned.

Planetfall corrected one logic error in the original INT routine regarding entries with negative
TICKS. Previously, any entry with a negative TICK value would have its routine execute with the
TICK value decreasing as well. So subsequent calls to this entry would make the TICK value more
negative. Theoretically, that value could then flip into the positive range because of the way negative
numbers are represented. Hexidecimal values of $0001 to $7FFF are positive (1 to 32767) while $8000
to $FFFF are negative (-32768 to -1). If a TICK value of $8000 (-32768) is decreased by 1 again, the
new value $7FFF now is 32767 and will not be executed on the next CLOCKER cycle. Planetfall
added a specific check for the $SFFFF (-1) TICK value which would still execute the routine at the
entry’s address but would not decrease the TICK value.

As mentioned before, AMFV uses the shortened 2 word entry. Its CLOCKER also will clear out
the routine address of any entry that also has zero TICKS. This allows INT to use these blank
entries for new entries. LGOP’s CLOCKER had the ability to “delete” entries that were at the
top of the interrupt table. It would lower the starting point of the interrupt table to just past any
blank or recently completed entries. If any blank or completed entries were below a still enabled
entry, they could not be deleted. Stationfall and Sherlock could decreased TICKS/time value by a
different amount for all entries with each call of CLOCKER. This allowed parts of the game to cause
interrupts to be executed soon than expected as each call of CLOCKER will more rapidly drop the
TICK counts.

HGTG still has the PARSER valid check to decide which pointer to use. If the PARSER fails, the
entire table is checked (#00 as pointer) instead of from the newest entry.

16.8 Removing Interrupts with DEQUEUE

Arguments: Routine address

Return: TRUE if successful, FALSE if unable to find interrupt

62

16.9 New Predicates for the Interrupts

DEQUEUE was introduced in LGOP and clears the routine address of the entry with that address.
Any dequeued entry would eventually be “removed” by CLOCKER.

16.9 New Predicates for the Interrupts
ENABLED?

Arguments: Routine address

Return: TRUE if matching interrupt is enabled, FALSE if no match found or interrupt is not enabled
RUNNING?

Arguments: Routine address

Return: TRUE if matching interrupt has at least 1 TICK left, FALSE if no TICKS left or no match
found

Two new predicates were added, ENABLED? And RUNNING? in Cutthroats to help find the status
of specific interrupts. ENABLED? returned TRUE if the ENABLED word in a matching interrupt
entry was set. RUNNING? returned TRUE if the TICKS in a matching entry was not zero, including
-1. In LGOP, ENABLED? was changed as no ENABLED word exists in its entries. It would check
the TICKS value and return TRUE if it was non-zero including -1. LGOP’s version of RUNNING?
would return TRUE if the matching entry’s TICK value was 1 or -1. So only entries that will be
executed on the next call of CLOCKER are considered running.

17 Basic Screen Output and TELL

17.1 Introduction

Infocom strived for readability, natural feel, and varied responses of its games with its text routines.
The games tried to be grammatically correct with display articles before nouns and using plural forms
if necessary. Later games would fine tune these routines even more. Infocom did use programming
macros for creating the proper text display routines. These macros would then be expanded into the
proper ZIL code during compiling. It is difficult to figure out which was the first game to use this
without the source code. The macros are seen in the Mini-Zork source code.

17.2 Abbreviations / Frequent words table

Starting with ZIP version 2, Infocom games used abbreviations to help reduce the space taken up by
text. In version 2, the ZSCII character $01 signaled an abbreviation is to be display. The next ZSCII
character indicates the requested abbreviation. This allows for 32 abbreviations. The abbreviation
ZSCII character is consistent throughout the 3 character sets. The previous new-line control character
(ZSCII 1) was moved to ZSCII 7 in character set 2.

To allow for more abbreviations, ZIP versions 3 and higher also use characters $02 and $03 to signal
an abbreviation. Since each of these special control characters can access 32 abbreviations, these
games could have 96 abbreviation, calculated using the formation: (abbreviation character value - 1)
* 32 + next character’s ZSCII value. This also left only 2 control characters (ZSCII 4 and 5) remain
to change the character set. Those control characters were repurposed to change the character set
for next character only. There would be no “shift lock”.

An abbreviation table contains 32 (or 96 for versions 3 or higher) word addresses for the Z-strings.
The abbreviation and next characters will then point to an entry in this abbreviation table with
an address to a Z-string which will then be displayed. Because each abbreviation uses 2 characters,
abbreviations for string longer than 2 characters could help reduce the size of the story file.

63

17 Basic Screen Output and TELL

17.3 Special PRINT Routines - WORD-PRINT, CLAUSE-PRINT,
PREP-PRINT

Zork 1 also included three print routines that work with the given command and prepositions:
e WORD-PRINT
e PREP-PRINT
e CLAUSE-PRINT

WORD-PRINT displays a sequence of characters from INBUF given the starting character and
number of characters to print.

PREP-PRINT displays the preposition given the preposition byte number,. The routine uses PREP-
FIND to convert the preposition byte number to a Vocabulary address for the preposition. The only
except is “through” which is larger than the 6 character limit for ZIP 3 or earlier. PREP-PRINT
looks for the corresponding preposition number and just display the entire token.

CLAUSE-PRINT display the entire noun clause using the boundary addresses stored in ITBL. A
preceding preposition can also be displayed if the preposition number is also passed as an argument.
The boundary addresses to use are based upon the element numbers in ITBL. Displaying the token
from Vocabulary or from INBUF depends on state of O-FLAG. The routine will use strings from the
Vocabulary (maximum of 6 characters) if the O-FLAG is set. Otherwise, it will use WORD-PRINT
to print the entire token from INBUF.

display the tokens in LEXYV given by the start and end address of the requested noun clause. This
limited any token to 6 characters. If the O-FLAG was clear, the routine extracted the length and
location of each token in INBUF and displayed the complete token.

17.4 New versions PRINT routines

Deadline introduced several 4 new routines and updated CLAUSE-PRINT to improve the quality of
the displayed text.

BUFFER-PRINT is a new routine that displays a sequence of tokens while modifying any truncated
or referred tokens. For example, the “mrs” token will then be displayed as “mrs.” while the “it” token
is replaced with its referring object. The address of the starting token and token after the last one
to display are passed to the routine. The fourth argument is a boolean value to indicate print a
preceding space before the first and subsequent tokens.

PRSO-PRINT and PRSI-PRINT are new routines that will display the direct or indirect object
clause, respectively. They extract the starting and ending addresses of the clause from ITBL and see
if the first token in the clause is “it”. If so, the current PRSO is displayed. Otherwise, these addresses
are passed to BUFFER-PRINT.

The last new routine display a token with the first letter capitalized. No official name is known
but could be called CAPITALIZE-PRINT. The routine pulls the first character and converts it to
uppercase without checking the case first. Then it will use WORD-PRINT to display the remaining
part of the token.

The new CLAUSE-PRINT utilizes BUFFER-PRINT to display those representative tokens with their
proper names. The routine will take the start and end element numbers from I'TBL and extracts the
start and end addresses for the tokens to print. These are then sent to BUFFER-PRINT.
Enchanter would later introduce THING-PRINT which takes a boolean argument to choose which
object clause to use (true for direct, false for indirect). The routine pulls the start and end addresses
for the requested object clause and passes it to BUFFER-PRINT.

64

17.5 Error message routines

17.5 Error message routines

All Infocom games have several default error messages when handling errors with given commands.
e CANT-USE
e CANT-ORPHAN
e UNKNOWN-WORD

CANT-USE was first used in Deadline and would insert an invalid token into the phrase: The word
‘<word >’ can’t be used in that sense.

CANT-OPRHAN was added in Starcross and had the static message: That command was incomplete.
Why don’t you try again?

UNKNOWN-WORD would display the word that is not found in Vocabulary:

[I don’t know the word "<word>" in a way that I don’t understand.]

and also updates the OOPS-TABLE with the location of the token that is unrecognized.

17.6 Using the TELL Macro

Source code for Infocom games used macros where a specific keyword and associated data would be
replaced with code incorporating that extra data. TELL was the universal way of displaying text.
However, this could result in repetitive code to display the same kind of text. So, later design guides
for Infocom games describes the use of the TELL macro with multiple modifiers. But, the macros
would not be replaced with strings of ZIL code but a call to separate routines for displaying text
with any additional modifiers such as proper definite and indefinite articles (depending on the type
and number of the object) or ending periods and linefeeds. “Learning ZIL” describes these modifiers.

18 The Describers - For Rooms and Objects

18.1 Introduction

There are several routines in an Infocom games that specialize in describing locations and ob-
jects which are an essential part of any game. “Learning ZIL” mentions DESCRIBE-ROOM and
DESCRIBE-OBJECTS, but there are also DESCRIBE-OBJECT, PRINT-CONT, and later PRINT-
CONTENTS which complete the needed routines to display an object and its contents. For example,
LOOK would call DESCRIBE-ROOM and DESCRIBE-OBJECTS with the verbose argument set.
Other commands, like INVENTORY or LOOK-INSIDE, would call PRINT-CONT on the WINNER
or PRSO, respectively.

18.2 PRINT-CONT
Arguments: Object or Room number, Verbose flag, LEVEL number

Returns: TRUE if there is some descriptive output, FALSE if none given

PRINT-CONT will describe the contents of the objects contained in the given object or room.
The routine will first describe each object by display the string in the FDESC (First DESCription)
property of the object. Any object that also can be seen inside (using SEE-INSIDE? predicate) will
have PRINT-CONT recursively called on it. If the routine is being used to display the inventory
of the WINNER's possession, it will skip the display of the FDESC’s of all the objects. PRINT-
CONT will then see if a special header (such as “You are carrying:” or “The <object> contains: “)

65

18 The Describers - For Rooms and Objects

needs to be displayed by seeing. This is done when an inventory is requested or the objects have
already been “touched”. This also needs to be the first text displayed for that particular routine
call. PRINT-CONT will then call DESCRIBE-OBJECT on each object to have it described. If any
of these objects are an integral part of another object, then PRINT-CONT is called recursively on
this integral object to see if anything else can be described. Once all the objects are checked again,
PRINT-CONT will also see if the WINNER is in a vehicle and if that vehicle is part of the contents
of the original requested object. If so, then PRINT-CONT will be called on that vehicle. While a
verbose flag argument can be passed, it is never used. The LEVEL argument determines the indent
of the descriptive text uses spaces from the IDENTS table (maximum of 5). As the routine does
further recursion, the level number increases along with the corresponding indent.

18.3 DESCRIBE-OBJECT

Arguments: Object or Room number, Verbose flag, LEVEL number

Returns: TRUE if extra descriptive output given from internal objects, FALSE if none given

DESCRIBE-OBJECT will try to display a descriptive text about an object using the FDESC (if the
object is untouched) or LDESC. If neither is available, a generic description is given, “There is a”
for level 0 or “A” for all other levels. If the WINNER is also in a vehicle, then a clarifying “(in the
room)” is given to remind the WINNER that the object is NOT in the vehicle. Also any objects that
have visible contents will be also called with PRINT-CONT to display the contents of that object.
Againa, the Verbose flag is not used in the routine but passed to PRINT-CONT if it is called.

18.4 DESCRIBE-OBJECTS

Arguments: Verbose flag

Returns: TRUE if there is some descriptive output, FALSE if none given

DESCRIBE-OBJECTS will try to display a descriptive text for all the objects in the current location
(HERE). It will not display a description of the location itself. If that location is not lit, the routine
will return with the error message “I can’t see anything in the dark.” If any objects do exist in the
current location, DESCRIBE-OBJECTS will call PRINT-CONT with this location and the current
VERBOSE level if one is not given. Return values are the same as PRINT-CONT.

18.5 DESCRIBE-ROOM
Arguments: TRUE (if called by LOOK action)

Returns: TRUE if room description given, FALSE if too dark to give description

DESCRIBE-ROOM will initially check if the room is dark, displaying a too-dark error message if it
is. The routine will then display the room name and decide if a further descriptions should be given.
If it was not called by a LOOK command or SUPERBRIEF is SET, then no further description
is given. If the WINNER is in a vehicle which is also in the room, the routine will indicate that
with the clarifying “(You are in the <vehicle>.)”. DESCRIBE-ROOM will then check if the Verbose
flag is set, or the room is untouched. Either situation would have the routine try to call the room’s
ACTION routine with M-LOOK to provide a description. If this fails, the room’s LDESC string will
be used if possible. If a room is untouched, then that room’s TOUCHBIT will be set.

66

18.6 PRINT-CONTENTS

18.6 PRINT-CONTENTS

Arguments: Object number

Returns: TRUE

PRINT-CONTENTS was added with Sorcerer-R6 to quickly display a list of objects in a room or
container. The object names would be separated by commas and “and”, if necessary. If only one
object was listed, then IT-OBJECT would be updated with that object.

18.7 Update: DESCRIBE-ROOM

Zork 2 added a new RARG (M-FLASH or $04) on a room’s ACTION routine even if verbose is
clear (minimal output). This allows a room to display important information even if the room was
already touched or verbose is clear. It also added a final call to the WINNER’s vehicle’s ACTION
with M-LOOK (if in a vehicle) when describing the current location.

19 Common Routines and Predicates

19.1 Introduction

Numerous routines are found in most or all Infocom games and provide important functions that are
not specific to a certain game or action. Predicates are a special type of routines that return true or
false based upon the given arguments. “Learning ZIL” does give numerous examples. No systematic
search has been made to find all of these special routines found in all Infocom games. The known
ones can be divided into four main categories:

e Tables
e Objects
e (Game States

e Movements

19.2 Table Routines and Predicates

There are three common table routines used in Infocom games since Zork 1:
e ZMEMQB (byte, address to table)
e ZMEMQ (word, address to table, last element to check, first element to check)
e PICK-ONE (address to table)

ZMEMQ@B searches for a given byte in a table of bytes. The interested byte and table are passed as
arguments. After getting the number of items in the table, the routine will step through each byte.
If the given byte is found, it returns true. Otherwise, it will return false.

ZMEMQ is similar to ZMEMQ but searches for a specific word in a table of word up to the last
element indicated. It also accepts one additional argument: first element number to check. If this
argument is not gien, then it will use the beginning of the table. For example:

ZMEMQ (0x3EAO, TBL, 6, 2)

67

19 Common Routines and Predicates

would search for the word 0x3EAOQ in a table of words starting with elements 2 through 6.
PICK-ONE, the original version, uses a table of words where one of these elements is randomly picked
and returned. The new PICK-ONE keeps track of what elements have already been picked and will
not pick them again until all the others have been picked. This is accomplished by “sorting” the table
of elements. Any picked word is swapped with the first unpicked word. When only 0 unpicked words
remain, the number of picked elements is reset which causes the entire process to be repeated. It is
quite ingenious.

1.

Get total number entries (0th word) and number of previously picked string address (1st word)
of string address in the table

Decrease total number of entries by 1 as one of the entries is the number of picked string
addresses

Calculate the address of the first unpicked string address and number of unpicked string ad-
dresses

Random pick a number with maximum number being the number of unpicked string addresses
Get the string address at that random location

Swap that string address with the one located in the first original unpicked string addresses
group

Update the number of picked items (1st word in the table)

If all the items have been picked (number of picked items equal total number of available
address), then reset this value to zero.

The picked word is then returned. Some games use both PICK-ONE returns as different situations
can demand different versions of the routine.

19.3 Object Predicates

As for the predicates, these will see if a given object can be interacted with in specific ways.

68

LIT?

HELD?
SEE-INSIDE?
ACCESSIBLE?
VISIBLE?
UNTOUCHABLE?
GLOBAL-IN?

TOUCHING? (not used)

19.3 Object Predicates

LIT? is the main predicate in Zork 1. It checks if the WINNER can see around in a given location
by looking at the ONBIT attribute. If the ONBIT is clear (location is dark), the routine will do a
secondary check if the given location is the same as the WINNER’s location. The secondary check
will look for any objects in the given location. If any are found, then the location is considered lit
and the routine will return TRUE.

HELD? is also in Zork 1 and checks the location of the given object’s location. If it is not the
WINNER, this location replaces the given object and the routine loops back to get the new location
of the just found location. This continues until the location is the WINNER (return TRUE) or the
location of the object is blank (return FALSE). Other versions such as in Zork 3 uses a recursive
method to find the ultimate location of an object and also look for the ROOMS and GLOBAL objects
which result in a false response. HGTG introduced a second argument which was a room or object.
This would be used instead of the WINNER to determine if the given object was ultimately located
in it. If no second argument was given, the routine would check if the given object was inside the
WINNER.

SEE-INSIDE? checks for specific attributes on a given object to see if its contents are visible. This
applies to containers such as a box or a surface object like a table where objects can be placed on
it. The routine was first used with Sorcerer and checked three attributes: INVISIBLE, OPEN, and
TRANSPARENT. The contents of an invisible object cannot be seen. An object that is open or
transparent can have its content seen from the outside. Wishbringer added an initial check to see
if the object is a surface which always leads to a true response. If object was not a surface, open,
or transparent, the routine would check if the object is an Actor and not the WINNER. Objects
contained in an actor are always visible. Hollywood Hijinx would check if the given object was a
container. If it is false, then the routine jumps to the section to check if the given object is an Actor.

ACCESSIBLE? was first introduced in Zork 3 and checks if the given object can be used. There
are objects that are visible but cannot be used (an object inside a closed and transparent container).

It would return true if the given object was present in the current location or is one of the game’s
GLOBAL objects.

VISIBLE? was also introduced in Sorcerer and sees if the given object can be used or seen by the
WINNER. The routine checks if the given object is accessible using the ACCESSIBLE? predicate. If
that is false, the routine checks if the WINNER, can see inside the given object’s location (for example
if it is in a clear box) by using SEE-INSIDE? If that is true, the routine will then recursively call
VISIBLE? with the object’s location. Wishbringer used a slightly different approach with checking
to see if the object was invisible first. If not, the location of the object is found with META-LOC (a
room or GLOBAL object). If it is on the WINNER, in the current room, or a GLOBAL object, then
it is considered visible. If the object is located somewhere else, the routine calls ACCESSIBLE? to see
if it is accessible. If so, then consider it visible. Sherlock only uses a single modified ACCESSIBLE?
command that also calls a modified SEE-INSIDE? routine. So this mimics the original form.

UNTOUCHABLE? is a curious predicate that seems to be only used in LGOP to screen for various
special situations where objects are in the same room but cannot be touched. For example, an object
inside of inside of a cage that is also in the room with the WINNER is considered untouchable. If
the given object is in the current location, held by the WINNER, or contained inside the WINNER,
then it would return FALSE (ie. it is touchable).

GLOBAL-IN? is a simple predicate that takes two arguments, an object and location, and checks
if the object is a local-global for that location. Essentially, the routine uses the ZMEMQB or
SCAN _ TABLE opcode to look for the given object in the GLOBAL property of the location.

TOUCHING? is described in “Learning ZIL.” as a predicate that takes an object and sees if it needs
to be “touched” to perform the current action, PRSA. There is no evidence in any released game of
a separate predicate that performs this function. Many action routines do a similar type of check,
however.

69

19 Common Routines and Predicates

19.4 Object Routines

The most common set of routines relate to objects. These include routines and predicates. The
routines return specific values:

e ROB

e WEIGHT

e META-LOC
e FIND-IN

Another routine CCOUNT (container count) and REMOVE-CAREFULLY are described in Mini-
Zork too.

ROB moves all the objects from one location (room or container) to another or empty destination.
It will step through each object in one location and insert into another (or null) and then move to
the next sibling object.

WEIGHT will add up the “weights” of all the objects in an object. This could be the PLAYER or
a container. The routine goes through each child object in the given object. If the child object is a
container, WEIGHT is called recursively on that child object. For each object, the weight property
is read and added to the total for that object and returned. This routine is useful to see if the
PLAYER or container cannot hold any more objects. The default weight for an object is set as one
of the default property values for the object table.

Starting with Zork 1, META-LOC would originally find the room that an object is located. If the
object was on the PLAYER or non-existent, it would return false. Starcross used different coding
and also add defaulted to the “Bridge” for any non-attached object. The Witness expanded the
return values to also LOCAL-GLOBALS and GLOBALS objects.

FIND-IN will try to find an object in the given location with the given flag number set. It will return
the first object found. If no object exists with that given flag set, FALSE is returned. “Learning ZIL”
does mention that if more than one object has the given flag set, FIND-IN would also return false.
However, there are no examples of a routine that keeps track of how many matches were found. All
routines will exit after finding that first match. Some of the later games also except a string with
the other arguments. This string will be displayed with the matched object name.

Two other routines in Mini-Zork are not documented by “Learning ZIL”. CCOUNT will count the
number of objects in the given location. It will not count any objects inside containers. REMOVE-
CAREFULLY removes the given object unless “it” is given which clears out the IT-OBJECT variable.
The routine then calls NOW-DARK?.

19.5 Game State Routines and Predicates

Various routine will interact or change the different states in the game such as if the player is dead
or reset the status line.

JIGS-UP (string)

INIT-STATUS-LINE (boolean ClearScreen?)
UPDATE-STATUS-LINE

NOW-DARK?

NOW-LIT?
VERB?

70

19.6 Movement Routines

e GAME-VERB?

JIGS-UP is in every game in some fashion. It is called when the PLAYER is killed or the game
is over. After the final score is displayed, a string is passed to it wish is displayed along with all
the possible choices for the PLAYER to proceed such as restart the game or quit. If the game is
restarted, the opcode RESTART is executed which will restart the interpreter and start execution
with the GO routine.

The status line routines, INI'T-STATUS-LINE and UPDATE-STATUS-LINE, are described in “Learn-
ing ZIL”as a common routine, but only Sherlock seems to use it. Usually, the status line updates
are handled by the routine for the READ opcode and is part of the Z-machine interpreter.
NOW-DARK? and NOW-LIT? are routines and not predicates. No arguments are passed to them.
LGOP appears to be the first game that used these. However, there is little evidence that subsequent
games incorporated this routine. NOW-DARK? sees if the current location is lit. If so, then it will
clear the LIT global variable and provide a warning message. NOW-LI'T? is the exact opposite except
it will also call the V-LOOK routine after setting LIT.

VERB? is a predicate that returns TRUE if PRSA is equal to any of the given verbs in the predicate
arguments. This does not actually call a routine but is expanded into a set of multiple commands
based upon how many verbs are given.

GAME-VERB? is a simple predicate that checks if the current PRSA is one of the “game verbs” or a
verb that does not trigger the CLOCKER routine. While “Learning ZIL” mentions a GAME-VERB
list, it is unclear if this is a global list in ZIL or hard coded into the routine.

19.6 Movement Routines

Since moving the PLAYER or actors is a very common action, Infocom games use three common
routines to perform it:

e GOTO (room number)
e DO-WALK (direction)
e OTHER-SIDE

GOTO essentially moves the user to the requested location while still calling the destinations action
routine with M-ENTER and getting a description. It does not check if the actor or WINNER is able
to directly get to the location. Some people consider it like teleporting into a location.

DO-WALK is similar to GOTO but it uses PERFORM which performs all necessary checks (unlike
GOTO). DO-WALK sets the direction of movement (P-WALK-DIR) and calls the V-WALK using
PERFORM with that DIR.

OTHER-SIDE is given an object number of a door and returns the room number on the opposite side
of the first door in the room. The routine steps through all the exit properties (highest to lowest) of
the given room until it finds a door object (the property will be 5 bytes long). It the door object for
that property matches the given door object, it will then return the room number associated with
that exit.

71

Appendix A: Story Headers

20 Conclusion - The End

The creativity in designing the original ZORK on PDP main frame computer can be almost directly
seen in the microprocessor version of all Infocom games. The structuring of rooms and objects, storing
grammatical information, and the innovative parser led to a surprisingly complex and interactive
game that could fit on a floppy disk. The use of a virtual Z-machine was the first known use of a
virtualization in a home computer as well. A present day interactive fiction creator can now design
their own games without having to start from scratch. But an ambitious programmer today can now
use these essential data structures and routines to create their own fairly complex IF system if they
want. While better game engines with more powerful parser and complex games already exist, the
sophistication of these early text adventure games in just about 60K of memory is a testament to
all of the programmers’ skill with ZIL and the efficiency of Z-code. Hopefully, the information here
has helped cracked the inner workings of these legendary games and made them more enjoyable and
appreciated decades later.

Appendix A: Story Headers

Header Layout

Original header layout found in all ZIP versions

‘ Word No. ‘ Name ‘ Function
00 ZVERSION Byte 0: Z-machine version
Byte 1: Z-machine mode?
01 ZORKID Release number
02 ENDLOD End address of pre-loaded memory (code and data),
Base of High Memory (start of non-preloaded data)
03 START Address of first instruction (not routine), Program Counter
04 VOCAB Address to Vocabulary table
05 OBJECT Object data address
06 GLOBALS Address to Global Variable table
07 PURBOT Start address of read-only (static) memory, code and data
08 FLAGS Flags, 16 bits

ZIP version 2 added the abbreviation information

09-0B SERIAL Bytes 12 to 17: Serial Number in ASCII characters (words also
labeled as SERIAL, SERI1, and SERI2)
0C FWORDS Address to Frequently used words (Abbreviation) table

ZIP version 3 added game information

0D PLENTH Length of game file (shifted??)
0E PCHKSM Checksum of game file

2Z-machine mode is described but never used (bit flags)

72

EZIP version extended story header layout

OF INTWRD Byte 1E: INTID/Interpreter number
Byte 1F: INTVR/version

10 SCRWRD? Byte 20: SCRV, Screen size in lines ($FF = printing terminal)
Byte 21: SCRH, Screen width in characters

XZIP also extended story header layout

11 HWRD Screen horizontal size of display in pixels
12 VWRD Screen vertical size of display in pixels
13 FWRD Byte 26: Font height
Byte 27: Font width
14 LMRG Screen left margin in pixels
15 RMRG Screen right margin in pixels
16 CLRWRD Byte 2C: Background color
Byte 2D: Foreground color
17 TCHARS Pointer to table of terminating characters
18 CRCNT Counter for carriage returns
19 CRFUNC Function for carriage returns
1A CHRSET Pointer to character set table
1B EXTAB Pointer to extension table, if needed
1C-1F USRNM Bytes 38 to 3F: Username in ASCII characters
MODE Byte

The MODE byte is the the second byte in the ZVERSION word of the story header. No bits are
used in the Zork 1 and 2 games released by Infocom. Bits 0-1 are set by the ZAP assembler while
bits 3 through 6 are set by the ZIP on startup.

Mode bits for ZIP version 3

‘ Bit No. ‘ Bit Name ‘ Function ‘
0 byte-swap 0 = high order byte first, 1 = low order byte first
1 status line format 0 = score/turns, 1 = hours:minutes
2 machine-specific function Story file split across two discs???

3 Tandy bit 0 = non-Tandy, 1 = Tandy (to censor some
informatino)

4 status line existence 0 = present, 1 = hiding

5 splitability 0 = split screen functions ignored, 1 = split
screen functions available

6 reserved Default font is a Variable-width font?7?

7 reserved 7777

3This word is set by the ZIP at startup.

73

Appendix A:

Story Headers

Mode bits for EZIP (ZIP version 4)

‘ Bit No. ‘ EZIP Bit Name ‘ Function
0 ESPLIT (screen operations) | SPLIT/SCREEN/CLEAR functions
1 EHINV (highlight inverse) Inverse highlight is not available
2 EHBLD (highlight bold) Bold highlight is not available
3 EHUND (highlight Underline-italic highlight not available
underline-italics)
4 ECURS (cursor addressing) CURSET/CURGET ignored
5 ESOUN (SOUND opcode) SOUND opcode is ignored
6 Reserved
7 Reserved
0 = not available/ignored, 1 = available
Mode bits for XZIP (ZIP version 5)
| Bit No. [Bit Name | Function
0 XCOLOR COLOR operations
1 XDISP DISPLAY (show images) operation
2 XBOLD Bold
3 XUNDE Italic/underline
4 XMONO Monospace style font
5 XSOUN SOUND
6 Reserved
7 Reserved
0 = not available/ignored, 1 = available
Extension table
MSLOCX word 1
MSLOCY word 2
MSETBL word 3 writable
MSEDIR word 4 writable
MSEINV word 5 writable
MSEVRB word 6 writable
MSEWRD word 7 writable
BUTTON word 8 writable
JOYSTICK word 9 writable
BSTAT word 10 writable
JSTAT word 11 writable

74

FLAGS Bits
FLAGS bits for ZIP

‘ Bit No. ‘ Versions ‘ Bit Name ‘ Function
0 1-5 FSCRI Interpreter currently transcripting
1 3-4 FFIXE Fixed-width font needed
2 4-5 FSTAT Refresh Status Line (by interpreter)
3 5 FDISP DISPLAY (show images) available
4 D FUNDO UNDO available
5 5 FMOUS MOUSE available
6 5 FCOLO COLOR available
7-15 1-5 Reserved

From E- and X-ZIP - Internal Infocom document

Appendix B: Attributes and Properties From “Learning ZIL"

Object Attributes (through YZIP)
TAKEBIT One of the most basic bits, this means that the player can pick up and carry the object.

TRYTAKEBIT This bit tells the parser not to let the player implicitly take an object

e This is important if the object has a value and must be scored, or if the object has an NDE-
SCBIT which must be cleared, or if you want taking the object to set a flag or queue a routine,
or...

CONTBIT The object is a container; things can be put inside it, it can be opened and closed, etc.
DOORBIT The object is a door and various routines, such as V-OPEN, should treat it as such.
OPENBIT The object is a door or container, and is open.

SURFACEBIT The object is a surface, such as a table, desk, countertop, etc.

e Any object with the surfacebit should also have the CONTBIT (since you can put things on
the surface) and the OPENBIT (since you can’t close a countertop as you can a box).

LOCKEDBIT Tells routines like V-OPEN that an object or door is locked and can’t be opened
without proper equipment.

WEARBIT The object can be wearable, not that it is actually being worn.
WORNBIT This means that a wearable object is currently being worn.
READBIT The object is readable. Any object with a TEXT property should have the READBIT.

LIGHTBIT The object is capable of being turned on and off. Doesn’t mean that the object is
actually on.

ONBIT For room, it is lit. Outdoor rooms should have ONBIT if daytime. For objects, it is
providing light. An object with the ONBIT should also have the LIGHTBIT.

75

Appendix B: Attributes and Properties From “Learning ZIL”

FLAMEBIT This means that the object is a source of fire.
e Object should also have the ONBIT and the LIGHTBIT

BURNBIT The object is burnable.
TRANSBIT The object is transparent; objects inside it can be seen even if it is closed.

NDESCBIT The object shouldn’t be described by the describers.

e This usually means that someone else, such as the room description, is describing the object.
Any takeable object, once taken, should have its NDESCBIT cleared.

INVISIBLE Tells the parser not to find this object. The intention is to clear the invisible at some
point.

TOUCHBIT For rooms, player has been to the room at least once. For objects, it has been taken
or otherwise disturbed by the player

e Once the TOUCHBIT is set, if it has an FDESC, that FDESC will no longer be used

SEARCHBIT Tells the parser to look as deeply into a container as it can in order to find the
referenced object.

e Without the SEARCHBIT, the parser will only look down one level.

e Objects with a SURFACEBIT essentially function as objets with a SEARCHBIT
VEHBIT This means that the object is a vehicle, and can be entered or boarded by the player.
e All objects with the VEHBIT should usually have the CONTBIT and the OPENBIT.

PERSONBIT This means that the object is a character in the game, and such act accordingly.
FEMALEBIT The object is an ACTOR who is a female.

VOWELBIT Any verb default which prints an indefinite article before the DESC, use "an" instead
Of Ha.ll

NARTICLEBIT The object’s DESC doesn’t not work with articles, and they should be omitted.
PLURALBIT The object’s DESC is a plural noun or noun phrase. The DESC should act accordingly.
RLANDBIT Usually used for rooms, llets any routine know that the room is dry land (as most are).
RWATERBIT The room is water rather than dry land

RAIRBIT The room is in mid-air, for those games with some type of flying.

KLUDGEBIT This bit is used only in the syntax file.

e It is used for those syntaxes which want to be simply VERB PREPOSITION with no object.
Put (FIND KLUDGEBIT) after the object. The parser, rather than complaining about the
missing noun, will see the FIND KLUDGEBIT and set the PRSO (or PRSI as the case may
be) to the ROOMS object.

76

OUTSIDEBIT Used in rooms to classify the room as an outdoors room.
INTEGRALBIT An integral part of another object, and can’t be independently taken or dropped.
PARTBIT The object is a body part: the HANDS object, for example.

NALLBIT This has something to do with telling a TAKE ALL not to take something, but I don’t
recall how it works. Help??7?

DROPBIT Found in vehicles, this not-very-important flag means that if the player drops something
while in that vehicle, the object should stay in the vehicle rather than falling to the floor of
the room itself.

INBIT Another not-too-important vehicle-related flag, it tells various routines to say "in the vehicle"
rather than "on the vehicle”.

Object Properties (through YZIP)

NORTH, SOUTH, EAST, WEST, NE, SE, NW, SW These are the direction properties, gener-
ally used only in room definitions.

e Note that the cardinal direction properties are not abbreviated, but that the non-cardinal ones
are abbreviated. There is no direction property called NORTHEAST, for example.

UP, DOWN These are just like the eight direction properties.
IN, OUT These are just like the eight direction properties.

e If the player just types IN or OUT, this property will handle the movement. Generally, it’s a
good idea to give the OUT property to any room with only one exit.

SYNONYM Contains a list of the nouns which can be used to refer to the object.
ADJECTIVE Contains a list of the adjectives which can be used to refer to the object.

ACTION Defines the action routine associated with the object.

e In the case of an object, the action routine is called when the object is the PRSO or the PRSI
of the player’s input. In the case of a room, the routine is called with M-BEG and MEND
once each turn, with M-ENTER whenever the room is entered, and with MLOOK whenever
the describers need to describe the room.

DESCFCN Defines the routine which the describers use to describe the object.

e This can be the same routine as the object’s action routine, provided that the routine is set up
to handle the optional variable (M-OBJDESC or M-OBJDESC?).

CONTFCN Indicates a special ROUTINE to call for objects contained in this object

GENERIC Defines the routine which handles cases where the parser determines an ambiguity about
which object the player is referring to.

e In the absence of a generic property, the parser will simply ask "Which FOO do you mean..."

DESC Technically, this isn’t a property, but it looks just like one when you define an object.

7

Appendix B: Attributes and Properties From “Learning ZIL”

e It contains the string which, in the case of objects,will be used in verb defaults, player’s inven-
tory, etc. In the case of rooms, it is the room name which appears before room description and
on the status line.

SDESC Using this property is the only way to give an object a changable DESC.

e Youcan't <PUTP .OBJECT ,P?DESC "new desc"> but you can <PUTP .OBJECT ,P?SDESC
"new desc">. Be warned, however, that if your game "shell" isn’t set up for SDESCs, you will
have to change every verb default. Also, be warned that doing this will increase the size of
your game by hundreds of bytes or more, since the verb defaults will no longer simply TELL
the desc of the object, but must instead call a little routine which decides whether the object
in question has an SDESC or not.

LDESC In the case of a room, this contains a string which the describers use for the long description
of the room.

e In the case of an object, this contains a string which the describers use to describe the object
if it is on the ground.

FDESC This property, which isn’t usually used in room definitions, contains a string which the
describers use to describe the object before the first time it is moved.

LOC Once again, technically not a property, but it looks just like one when you're creating an
object.

e Simply, this property contains the name of the object which contains this object (in the case
of a room, this is the object ROOMS).

SIZE Contains a number which is the size/weight of the object.

e Generally, it is only meaningful for a takeable object. If a takeable object has no size property,
the game usually gives it a default size of 5. The size of an object affects the number of object
that a player can carry, how much of a container it takes up, and so on.

CAPACITY Contains a number which is the capacity of the object.

e Generally, it is only meaningful for a container. If a container has no size property, the game
usually gives it a default capacity of 5. The capacity of a container affects the number of objects
which can be placed inside it.

VALUE This property is used in many games that have scoring.

e The property contains a number; in the case of rooms, it is the number of points the player
gets for entering the room for the first time; in the case of objects, it is the number of points
the player gets for picking up the object for the first time.

GLOBAL Generally found only in room definitions, this property contains a list of objects which
are local-globals referencable in that room.

OWNER Defines an object which is the owner of this object.

e For example, the SPORTS-CAR object might have the property (OWNER CYBIL) so that
the player could refer to the car as "Cybil’s car" even though Cybil isn’t actually holding the
car. When Cybil sells the car to the player, you would <PUTP ,SPORTS-CAR ,P7OWNER
,PROTAGONIST > so that the player could now refer to it as "my car."

78

TEXT This property contains a string which is used when the player tries to read the object.

e It exists for those objects which would otherwise need an action routine to handle READ but
nothing else.

THINGS Formerly known as the PSEUDO property, this property allows you to create "pseudo-
objects" with some of the properties of real objects.

e They have three parts: a list of adjectives, a list of nouns, and an action routine. Here’s
example: (THINGS (RED CARMINE) (SCARF ASCOT) RED-SCARF-F). Pseudo objects
are very limited, however. They cannot have flags, and they cannot be moved. It is beneficial
to use them whenever feasible, because (unlike real objects) they take up no pre-load space.

ADJACENT Something to do with adjacent rooms and referencability. Stu?
PLURAL Stu?
PICTURE Contains the name of a graphic from the picture file associated with the room or object.

FLAGS This is another fellow which looks just like a property but isn’t actually a property.

e It contains a list of all the flags which are FSET in that object at the start of the game. A
list of the common flags can be found in the next appendix. (BY the time YZIP was used,
attributes were just considered a list of flags in this property and not a special entity).

For all exit (direction) properties, the type of exit depends on the length of the property:

Unconditional Exit | 1 byte Byte 0: room number
No Exit 2 bytes Byte 0-1: Z-string address of exit error
Functional Exit 3 bytes Byte 0-1: Routine address,

Byte 2: 00

Conditional Exit 4 bytes Byte 0: Room number,

Byte 1: Global variable,

Byte 2-3: Z-string address for exit error
Door Exit 5 bytes Byte 0: Room number,

Byte 1: Door object number,

Byte 2-3: Z-string address for exit error,
Byte 4: 00

Z1L-course from the Infocom Cabinet does mention two attributes and one property not mentioned
in “Learning ZIL™:

e FURNITURE attribute: The object is a piece of furniture that a player or actor can sit on.

e RMUNGBIT attribute: This applies to rooms only and indicates the room does not exist or
accessable. The appropriate error message needs to be given in the LDESC property. This is
a cleaner method of removing a room.

e IN property: The container of this object

79

Appendix C: Object Attributes and Properties in Zork 1

Appendix C: Object Attributes and Properties in Zork 1

Attributes

$00 MAZEBIT Room is part of the maze.

$01 HOUSEBIT Room is part of the house.

$02 RLANDBIT Room is on dry land.

$03 ONBIT For objects, it gives light. For locations, it is lit. All
outdoor rooms should have ONBIT set.

$04 FLAMEBIT Object can be a source of fire. LIGHTBIT should also be
set.

$05 VEHBIT Object can be entered or boarded by the player.

$06 LIGHTBIT Object can be turned on or off.

$07 KNIFEBIT Object can cut other objects.

$08 BURNBIT Object can be burned.

$09 READBIT Object can be read.

$0A SURFACEBIT Object is a container and hold objects which are always
visible. CONTBIT and OPENBIT should be set as well.

$0B SWITCHBIT Object can be turned on or off.

$0C TRYTAKEBIT object could be picked up but other values or routines need
to be checked.

$0D OPENBIT Object is can be opened or closed, refers to doors and
containers.

$OE CONTBIT Object is a container and can contain other objects or be
open/closed /transparent.

$OF TRANSBIT Object is transparent so objects inside it can be found even

if OPENBIT is clear.

$10 FOODBIT Object can be eaten.

$11 TAKEBIT Object can be picked up or carried

$12 ACCEPTBIT? (can accept objects)

$13 SACREDBIT

$14 PERSONBIT Object is a character in the game.

$15 DOORBIT Object is a door.

$16 DRINKBIT Object can be drunk.

$17 TOOLBIT Object can be used as a tool to open other things.

$18 CLIMBBIT Object can be climbed

$19 INTEGRALBIT Object cannot be taken separately from other objects, is
part of another object.

$1A INJUREDBIT Object is injured but not dead.

$1B ALIVEBIT Object is alive.

$1C TOUCHBIT For object, it has been taken or used. For rooms, it has
been visited.

$1D INVISIBLE Object is not detected by the game.

$1E CANTENTERBIT | (or full of water bit)

$1F NONLANDBIT Room is in or near the water.

80

Properties

$01 NOT USED

$02 NOT USED

$03 NOT USED

$04 NOT USED

$05 SPECTALOBJS 0-2 entries of (dict addr, paddr for DESCFCN)

$06 LOCAL-GLOBALS | array of obj #s that are valid to use with object

$07 BITCHECK attribute # to check???

$08 TEXT address of z-string

$09 SIZE weight or size of the object

$0A CAPACITY maximum weight or size that on object can hold

$0B FDESC addr to z-string of first description

$0C TREASUREVALUE

$0D VALUE pts scores when taking a prized obj or entering a secret
room

$O0E LDESC addr to z-string of "lie on ground" description

$OF HEALTH 0-5, 0 is healthy, 5 is dead

$10 ADJECTIVE adjective value in byte

$11 ACTION address to routine

$12 SYNONYM vocabulary addresses of synonymous tokens (must have
default name too)

$13 LAND exit

$14 ouT exit

$15 IN exit

$16 DOWN exit

$17 UP exit

$18 SW exit

$19 SE exit

$1A NW exit

$1B NE exit

$1C S exit

$1D W exit

$1E E exit

$1F N exit

	1 ZIL, ZILCH, ZAP, and ZIP
	1.1 Introduction
	1.2 ZIP versions 1
	1.3 ZIP version 2
	1.4 ZIP version 3
	1.5 Enhanced ZIP (EZIP), version 4
	1.6 Extended ZIP (XZIP), version 5
	1.7 YZIP, version 6

	2 General structure of Infocom Games and Data Structures
	2.1 Introduction and Story Headers
	2.2 The Memory Layout of Infocom Games
	2.3 The Massive Object Table
	2.4 Global Variables
	2.5 Tables and Buffers

	3 Syntax Entries - The Biggest Mystery of them All
	3.1 Introduction
	3.2 Prepositions
	3.3 Syntax Entry Pointer Table
	3.4 Syntax Entries
	3.5 Get What I Mean (GWIM) Feature
	3.6 Location Restriction of Objects
	3.7 Pre-actions and Actions
	3.8 An Example
	3.9 Update: Compact Syntaxes to Save Space

	4 Execution of Infocom Games - An Overview
	4.1 Introduction
	4.2 Initialization with GO
	4.3 Heart Beat of the Game with MAIN-LOOP
	4.4 Understanding the User with PARSER
	4.5 Completing Previous Command with ORPHAN-MERGE
	4.6 Match the Command with SYNTAX-CHECK
	4.7 Find the Objects with SNARF-OBJECT
	4.8 Final check on Objects with TAKE-CHECK and MANY-CHECK
	4.9 Call the Actions with PERFORM
	4.10 Tick the CLOCKER
	4.11 Graphic representation of Game Flow

	5 GO - Gentlemen, Start Your Engines!
	5.1 Introduction
	5.2 Running GO

	6 MAIN-LOOP - Heart of the Game
	6.1 Introduction
	6.2 The Details
	6.3 Details of Multiples of Multiples
	6.4 Update: Managing Global Variables
	6.5 Update: How many NOT-HERE-OBJECTs?
	6.6 Update: Checking For Invalid Exceptions

	7 PARSER: How Now Brown Cow
	7.1 Introduction
	7.2 Characters vs. Tokens
	7.3 PARSER Variables and Grammatical Structure Definitions
	7.4 PARSER Table (ITBL)
	7.5 Checking Word Types with WT?
	7.6 Start of PARSER: Where is the command?
	7.7 Now, Traverse the Tokens…
	7.8 Update: Speaking to Actors with Quotes
	7.9 Update: Titles and Adverbs (briefly)
	7.10 Update: Numbers, a new object

	8 PARSER: New Commands and Routines
	8.1 Introduction
	8.2 STUFF
	8.3 INBUF-STUFF
	8.4 New AGAIN command
	8.5 OOPS!
	8.6 INBUF-ADD
	8.7 UNDO
	8.8 Update: Other Minor Changes in PARSER
	8.9 Update: ReplaceToken routine

	9 CLAUSE: Find the Noun Clause Boundaries
	9.1 Introduction
	9.2 How it screens...
	9.3 Update: New Matches…

	10 ORPHAN-MERGE: Fix What Is Broken
	10.1 Introduction
	10.2 Fixing Orphans with ORPHAN-MERGE
	10.3 Clearing up Ambiguity
	10.4 ACLAUSE-WIN
	10.5 Using CLAUSE-COPY
	10.6 CLAUSE-ADD
	10.7 Update: New changes of ORPHAN-MERGE
	10.8 Update: New ACLAUSE-WIN expands its options
	10.9 Update: NCLAUSE-WIN
	10.10 Update: New version of CLAUSE-COPY

	11 SYNTAX-CHECK: Find Correct Syntax Entry
	11.1 Introduction
	11.2 Hierarchy of Matching
	11.3 GWIM (Get What I Mean)
	11.4 ORPHAN: Creating an Orphaned Command
	11.5 Update: SYNTAX-CHECK
	11.6 Update: New versions of GWIM
	11.7 Update: New versions of ORPHAN

	12 Getting Objects with SNARF-OBJECTS
	12.1 Introduction
	12.2 Setting up Routines
	12.3 SNARFEM: Looking for Groups of Objects
	12.4 BUT-MERGE
	12.5 Getting Object Numbers for each Object with GET-OBJECT
	12.6 Bug: Randomly Picking Objects
	12.7 Update: New versions of SNARF-OBJECTS
	12.8 Update: New versions of SNARFEM
	12.9 Update: New BUT-MERGE
	12.10 Update: New ways to GET-OBJECT

	13 Search for Objects using SEARCH-LIST
	13.1 Introduction
	13.2 SEARCH-LIST: Finding Objects in Room and on Winner
	13.3 DO-SL: Find Objects Based Upon Search Level
	13.4 GLOBAL-CHECK: Look for Objects Everywhere
	13.5 THIS-IT?
	13.6 Update: New version of SEARCH-LIST
	13.7 Update: New version of GLOBAL-CHECK
	13.8 Update: New version of THIS-IT?
	13.9 Update: NOT-HERE-OBJECT
	13.10 Update: MOBY-FIND

	14 Can Many Objects be TAKEn Before Using with TAKE-CHECK and MANY-CHECK
	14.1 Introduction
	14.2 ITAKE-CHECK (through TAKE-CHECK): Checking TAKE and HAVE bits
	14.3 Update: New ITAKE-CHECK
	14.4 MANY-CHECK

	15 It's Time to Perform with PERFORM
	15.1 Introduction
	15.2 Checks and Order
	15.3 THIS-IS-IT

	16 Pardon the Interruptions
	16.1 Introduction
	16.2 Creating and Storing interrupts with INT
	16.3 QUEUE - Setting Up the Interrupts
	16.4 CLOCKER - Running Interrupts
	16.5 What about DEMONs?
	16.6 Update: New INT and Interrupt Entry
	16.7 Update: New CLOCKER
	16.8 Removing Interrupts with DEQUEUE
	16.9 New Predicates for the Interrupts

	17 Basic Screen Output and TELL
	17.1 Introduction
	17.2 Abbreviations / Frequent words table
	17.3 Special PRINT Routines - WORD-PRINT, CLAUSE-PRINT, PREP-PRINT
	17.4 New versions PRINT routines
	17.5 Error message routines
	17.6 Using the TELL Macro

	18 The Describers - For Rooms and Objects
	18.1 Introduction
	18.2 PRINT-CONT
	18.3 DESCRIBE-OBJECT
	18.4 DESCRIBE-OBJECTS
	18.5 DESCRIBE-ROOM
	18.6 PRINT-CONTENTS
	18.7 Update: DESCRIBE-ROOM

	19 Common Routines and Predicates
	19.1 Introduction
	19.2 Table Routines and Predicates
	19.3 Object Predicates
	19.4 Object Routines
	19.5 Game State Routines and Predicates
	19.6 Movement Routines

	20 Conclusion - The End
	Appendix A: Story Headers
	Appendix B: Attributes and Properties From “Learning ZIL”
	Appendix C: Object Attributes and Properties in Zork 1

